blender/intern/iksolver/intern/MT_ExpMap.cpp
2005-08-27 12:44:41 +00:00

252 lines
5.6 KiB
C++

/**
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Original Author: Laurence
* Contributor(s): Brecht
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "MT_ExpMap.h"
/**
* Set the exponential map from a quaternion. The quaternion must be non-zero.
*/
void
MT_ExpMap::
setRotation(
const MT_Quaternion &q
) {
// ok first normalize the quaternion
// then compute theta the axis-angle and the normalized axis v
// scale v by theta and that's it hopefully!
m_q = q.normalized();
m_v = MT_Vector3(m_q.x(), m_q.y(), m_q.z());
MT_Scalar cosp = m_q.w();
m_sinp = m_v.length();
m_v /= m_sinp;
m_theta = atan2(double(m_sinp),double(cosp));
m_v *= m_theta;
}
/**
* Convert from an exponential map to a quaternion
* representation
*/
const MT_Quaternion&
MT_ExpMap::
getRotation(
) const {
return m_q;
}
/**
* Convert the exponential map to a 3x3 matrix
*/
MT_Matrix3x3
MT_ExpMap::
getMatrix(
) const {
return MT_Matrix3x3(m_q);
}
/**
* Update & reparameterizate the exponential map
*/
void
MT_ExpMap::
update(
const MT_Vector3& dv
){
m_v += dv;
angleUpdated();
}
/**
* Compute the partial derivatives of the exponential
* map (dR/de - where R is a 3x3 rotation matrix formed
* from the map) and return them as a 3x3 matrix
*/
void
MT_ExpMap::
partialDerivatives(
MT_Matrix3x3& dRdx,
MT_Matrix3x3& dRdy,
MT_Matrix3x3& dRdz
) const {
MT_Quaternion dQdx[3];
compute_dQdVi(dQdx);
compute_dRdVi(dQdx[0], dRdx);
compute_dRdVi(dQdx[1], dRdy);
compute_dRdVi(dQdx[2], dRdz);
}
void
MT_ExpMap::
compute_dRdVi(
const MT_Quaternion &dQdvi,
MT_Matrix3x3 & dRdvi
) const {
MT_Scalar prod[9];
/* This efficient formulation is arrived at by writing out the
* entire chain rule product dRdq * dqdv in terms of 'q' and
* noticing that all the entries are formed from sums of just
* nine products of 'q' and 'dqdv' */
prod[0] = -MT_Scalar(4)*m_q.x()*dQdvi.x();
prod[1] = -MT_Scalar(4)*m_q.y()*dQdvi.y();
prod[2] = -MT_Scalar(4)*m_q.z()*dQdvi.z();
prod[3] = MT_Scalar(2)*(m_q.y()*dQdvi.x() + m_q.x()*dQdvi.y());
prod[4] = MT_Scalar(2)*(m_q.w()*dQdvi.z() + m_q.z()*dQdvi.w());
prod[5] = MT_Scalar(2)*(m_q.z()*dQdvi.x() + m_q.x()*dQdvi.z());
prod[6] = MT_Scalar(2)*(m_q.w()*dQdvi.y() + m_q.y()*dQdvi.w());
prod[7] = MT_Scalar(2)*(m_q.z()*dQdvi.y() + m_q.y()*dQdvi.z());
prod[8] = MT_Scalar(2)*(m_q.w()*dQdvi.x() + m_q.x()*dQdvi.w());
/* first row, followed by second and third */
dRdvi[0][0] = prod[1] + prod[2];
dRdvi[0][1] = prod[3] - prod[4];
dRdvi[0][2] = prod[5] + prod[6];
dRdvi[1][0] = prod[3] + prod[4];
dRdvi[1][1] = prod[0] + prod[2];
dRdvi[1][2] = prod[7] - prod[8];
dRdvi[2][0] = prod[5] - prod[6];
dRdvi[2][1] = prod[7] + prod[8];
dRdvi[2][2] = prod[0] + prod[1];
}
// compute partial derivatives dQ/dVi
void
MT_ExpMap::
compute_dQdVi(
MT_Quaternion *dQdX
) const {
/* This is an efficient implementation of the derivatives given
* in Appendix A of the paper with common subexpressions factored out */
MT_Scalar sinc, termCoeff;
if (m_theta < MT_EXPMAP_MINANGLE) {
sinc = 0.5 - m_theta*m_theta/48.0;
termCoeff = (m_theta*m_theta/40.0 - 1.0)/24.0;
}
else {
MT_Scalar cosp = m_q.w();
MT_Scalar ang = 1.0/m_theta;
sinc = m_sinp*ang;
termCoeff = ang*ang*(0.5*cosp - sinc);
}
for (int i = 0; i < 3; i++) {
MT_Quaternion& dQdx = dQdX[i];
int i2 = (i+1)%3;
int i3 = (i+2)%3;
MT_Scalar term = m_v[i]*termCoeff;
dQdx[i] = term*m_v[i] + sinc;
dQdx[i2] = term*m_v[i2];
dQdx[i3] = term*m_v[i3];
dQdx.w() = -0.5*m_v[i]*sinc;
}
}
// reParametize away from singularity, updating
// m_v and m_theta
void
MT_ExpMap::
reParametrize(
){
if (m_theta > MT_PI) {
MT_Scalar scl = m_theta;
if (m_theta > MT_2_PI){ /* first get theta into range 0..2PI */
m_theta = MT_Scalar(fmod(m_theta, MT_2_PI));
scl = m_theta/scl;
m_v *= scl;
}
if (m_theta > MT_PI){
scl = m_theta;
m_theta = MT_2_PI - m_theta;
scl = MT_Scalar(1.0) - MT_2_PI/scl;
m_v *= scl;
}
}
}
// compute cached variables
void
MT_ExpMap::
angleUpdated(
){
m_theta = m_v.length();
reParametrize();
// compute quaternion, sinp and cosp
if (m_theta < MT_EXPMAP_MINANGLE) {
m_sinp = MT_Scalar(0.0);
/* Taylor Series for sinc */
MT_Vector3 temp = m_v * MT_Scalar(MT_Scalar(.5) - m_theta*m_theta/MT_Scalar(48.0));
m_q.x() = temp.x();
m_q.y() = temp.y();
m_q.z() = temp.z();
m_q.w() = MT_Scalar(1.0);
} else {
m_sinp = MT_Scalar(sin(.5*m_theta));
/* Taylor Series for sinc */
MT_Vector3 temp = m_v * (m_sinp/m_theta);
m_q.x() = temp.x();
m_q.y() = temp.y();
m_q.z() = temp.z();
m_q.w() = MT_Scalar(cos(.5*m_theta));
}
}