blender/intern/cycles/kernel/kernel_light.h
Brecht Van Lommel 58a290234b Cycles: ray visibility options now work for lamps and mesh lights, with and without
multiple importance sampling, so you can disable them for diffuse/glossy/transmission.

The Light Path node here is still weak and does not give this info. To make that
work we'd need to evaluate the shader multiple times which is slow and we can't
detect well enough when it is actually needed.
2013-06-07 18:59:23 +00:00

612 lines
16 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* Light Sample result */
typedef struct LightSample {
float3 P; /* position on light, or direction for distant light */
float3 Ng; /* normal on light */
float3 D; /* direction from shading point to light */
float t; /* distance to light (FLT_MAX for distant light) */
float pdf; /* light sampling probability density function */
float eval_fac; /* intensity multiplier */
int object; /* object id for triangle/curve lights */
int prim; /* primitive id for triangle/curve ligths */
int shader; /* shader id */
int lamp; /* lamp id */
LightType type; /* type of light */
} LightSample;
/* Background Light */
#ifdef __BACKGROUND_MIS__
__device float3 background_light_sample(KernelGlobals *kg, float randu, float randv, float *pdf)
{
/* for the following, the CDF values are actually a pair of floats, with the
* function value as X and the actual CDF as Y. The last entry's function
* value is the CDF total. */
int res = kernel_data.integrator.pdf_background_res;
int cdf_count = res + 1;
/* this is basically std::lower_bound as used by pbrt */
int first = 0;
int count = res;
while(count > 0) {
int step = count >> 1;
int middle = first + step;
if(kernel_tex_fetch(__light_background_marginal_cdf, middle).y < randv) {
first = middle + 1;
count -= step + 1;
}
else
count = step;
}
int index_v = max(0, first - 1);
kernel_assert(index_v >= 0 && index_v < res);
float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
float2 cdf_next_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v + 1);
float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res);
/* importance-sampled V direction */
float dv = (randv - cdf_v.y) / (cdf_next_v.y - cdf_v.y);
float v = (index_v + dv) / res;
/* this is basically std::lower_bound as used by pbrt */
first = 0;
count = res;
while(count > 0) {
int step = count >> 1;
int middle = first + step;
if(kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + middle).y < randu) {
first = middle + 1;
count -= step + 1;
}
else
count = step;
}
int index_u = max(0, first - 1);
kernel_assert(index_u >= 0 && index_u < res);
float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + index_u);
float2 cdf_next_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + index_u + 1);
float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + res);
/* importance-sampled U direction */
float du = (randu - cdf_u.y) / (cdf_next_u.y - cdf_u.y);
float u = (index_u + du) / res;
/* compute pdf */
float denom = cdf_last_u.x * cdf_last_v.x;
float sin_theta = sinf(M_PI_F * v);
if(sin_theta == 0.0f || denom == 0.0f)
*pdf = 0.0f;
else
*pdf = (cdf_u.x * cdf_v.x)/(M_2PI_F * M_PI_F * sin_theta * denom);
*pdf *= kernel_data.integrator.pdf_lights;
/* compute direction */
return -equirectangular_to_direction(u, v);
}
__device float background_light_pdf(KernelGlobals *kg, float3 direction)
{
float2 uv = direction_to_equirectangular(direction);
int res = kernel_data.integrator.pdf_background_res;
float sin_theta = sinf(uv.y * M_PI_F);
if(sin_theta == 0.0f)
return 0.0f;
int index_u = clamp(float_to_int(uv.x * res), 0, res - 1);
int index_v = clamp(float_to_int(uv.y * res), 0, res - 1);
/* pdfs in V direction */
float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * (res + 1) + res);
float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res);
float denom = cdf_last_u.x * cdf_last_v.x;
if(denom == 0.0f)
return 0.0f;
/* pdfs in U direction */
float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * (res + 1) + index_u);
float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
float pdf = (cdf_u.x * cdf_v.x)/(M_2PI_F * M_PI_F * sin_theta * denom);
return pdf * kernel_data.integrator.pdf_lights;
}
#endif
/* Regular Light */
__device float3 disk_light_sample(float3 v, float randu, float randv)
{
float3 ru, rv;
make_orthonormals(v, &ru, &rv);
to_unit_disk(&randu, &randv);
return ru*randu + rv*randv;
}
__device float3 distant_light_sample(float3 D, float radius, float randu, float randv)
{
return normalize(D + disk_light_sample(D, randu, randv)*radius);
}
__device float3 sphere_light_sample(float3 P, float3 center, float radius, float randu, float randv)
{
return disk_light_sample(normalize(P - center), randu, randv)*radius;
}
__device float3 area_light_sample(float3 axisu, float3 axisv, float randu, float randv)
{
randu = randu - 0.5f;
randv = randv - 0.5f;
return axisu*randu + axisv*randv;
}
__device float spot_light_attenuation(float4 data1, float4 data2, LightSample *ls)
{
float3 dir = make_float3(data2.y, data2.z, data2.w);
float3 I = ls->Ng;
float spot_angle = data1.w;
float spot_smooth = data2.x;
float attenuation = dot(dir, I);
if(attenuation <= spot_angle) {
attenuation = 0.0f;
}
else {
float t = attenuation - spot_angle;
if(t < spot_smooth && spot_smooth != 0.0f)
attenuation *= smoothstepf(t/spot_smooth);
}
return attenuation;
}
__device float lamp_light_pdf(KernelGlobals *kg, const float3 Ng, const float3 I, float t)
{
float cos_pi = dot(Ng, I);
if(cos_pi <= 0.0f)
return 0.0f;
return t*t/cos_pi;
}
__device void lamp_light_sample(KernelGlobals *kg, int lamp,
float randu, float randv, float3 P, LightSample *ls)
{
float4 data0 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 0);
float4 data1 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 1);
LightType type = (LightType)__float_as_int(data0.x);
ls->type = type;
ls->shader = __float_as_int(data1.x);
ls->object = ~0;
ls->prim = ~0;
ls->lamp = lamp;
if(type == LIGHT_DISTANT) {
/* distant light */
float3 lightD = make_float3(data0.y, data0.z, data0.w);
float3 D = lightD;
float radius = data1.y;
float invarea = data1.w;
if(radius > 0.0f)
D = distant_light_sample(D, radius, randu, randv);
ls->P = D;
ls->Ng = D;
ls->D = -D;
ls->t = FLT_MAX;
float costheta = dot(lightD, D);
ls->pdf = invarea/(costheta*costheta*costheta);
ls->eval_fac = ls->pdf*kernel_data.integrator.inv_pdf_lights;
}
#ifdef __BACKGROUND_MIS__
else if(type == LIGHT_BACKGROUND) {
/* infinite area light (e.g. light dome or env light) */
float3 D = background_light_sample(kg, randu, randv, &ls->pdf);
ls->P = D;
ls->Ng = D;
ls->D = -D;
ls->t = FLT_MAX;
ls->eval_fac = 1.0f;
}
#endif
else {
ls->P = make_float3(data0.y, data0.z, data0.w);
if(type == LIGHT_POINT || type == LIGHT_SPOT) {
float radius = data1.y;
if(radius > 0.0f)
/* sphere light */
ls->P += sphere_light_sample(P, ls->P, radius, randu, randv);
ls->D = normalize_len(ls->P - P, &ls->t);
ls->Ng = -ls->D;
float invarea = data1.z;
ls->eval_fac = (0.25f*M_1_PI_F)*invarea;
ls->pdf = invarea;
if(type == LIGHT_SPOT) {
/* spot light attentuation */
float4 data2 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 2);
ls->eval_fac *= spot_light_attenuation(data1, data2, ls);
}
}
else {
/* area light */
float4 data2 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 2);
float4 data3 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 3);
float3 axisu = make_float3(data1.y, data1.z, data1.w);
float3 axisv = make_float3(data2.y, data2.z, data2.w);
float3 D = make_float3(data3.y, data3.z, data3.w);
ls->P += area_light_sample(axisu, axisv, randu, randv);
ls->Ng = D;
ls->D = normalize_len(ls->P - P, &ls->t);
float invarea = data2.x;
ls->eval_fac = 0.25f*invarea;
ls->pdf = invarea;
}
ls->eval_fac *= kernel_data.integrator.inv_pdf_lights;
ls->pdf *= lamp_light_pdf(kg, ls->Ng, -ls->D, ls->t);
}
}
__device bool lamp_light_eval(KernelGlobals *kg, int lamp, float3 P, float3 D, float t, LightSample *ls)
{
float4 data0 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 0);
float4 data1 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 1);
LightType type = (LightType)__float_as_int(data0.x);
ls->type = type;
ls->shader = __float_as_int(data1.x);
ls->object = ~0;
ls->prim = ~0;
ls->lamp = lamp;
if(!(ls->shader & SHADER_USE_MIS))
return false;
if(type == LIGHT_DISTANT) {
/* distant light */
float radius = data1.y;
if(radius == 0.0f)
return false;
if(t != FLT_MAX)
return false;
/* a distant light is infinitely far away, but equivalent to a disk
* shaped light exactly 1 unit away from the current shading point.
*
* radius t^2/cos(theta)
* <----------> t = sqrt(1^2 + tan(theta)^2)
* tan(th) area = radius*radius*pi
* <----->
* \ | (1 + tan(theta)^2)/cos(theta)
* \ | (1 + tan(acos(cos(theta)))^2)/cos(theta)
* t \th| 1 simplifies to
* \-| 1/(cos(theta)^3)
* \| magic!
* P
*/
float3 lightD = make_float3(data0.y, data0.z, data0.w);
float costheta = dot(-lightD, D);
float cosangle = data1.z;
if(costheta < cosangle)
return false;
ls->P = -D;
ls->Ng = -D;
ls->D = D;
ls->t = FLT_MAX;
float invarea = data1.w;
ls->pdf = invarea/(costheta*costheta*costheta);
ls->eval_fac = ls->pdf;
}
else if(type == LIGHT_POINT || type == LIGHT_SPOT) {
float3 lightP = make_float3(data0.y, data0.z, data0.w);
float radius = data1.y;
/* sphere light */
if(radius == 0.0f)
return false;
if(!ray_aligned_disk_intersect(P, D, t,
lightP, radius, &ls->P, &ls->t))
return false;
ls->Ng = -D;
ls->D = D;
float invarea = data1.z;
ls->eval_fac = (0.25f*M_1_PI_F)*invarea;
ls->pdf = invarea;
if(type == LIGHT_SPOT) {
/* spot light attentuation */
float4 data2 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 2);
ls->eval_fac *= spot_light_attenuation(data1, data2, ls);
if(ls->eval_fac == 0.0f)
return false;
}
}
else if(type == LIGHT_AREA) {
/* area light */
float4 data2 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 2);
float4 data3 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 3);
float invarea = data2.x;
if(invarea == 0.0f)
return false;
float3 axisu = make_float3(data1.y, data1.z, data1.w);
float3 axisv = make_float3(data2.y, data2.z, data2.w);
float3 Ng = make_float3(data3.y, data3.z, data3.w);
/* one sided */
if(dot(D, Ng) >= 0.0f)
return false;
ls->P = make_float3(data0.y, data0.z, data0.w);
if(!ray_quad_intersect(P, D, t,
ls->P, axisu, axisv, &ls->P, &ls->t))
return false;
ls->D = D;
ls->Ng = Ng;
ls->pdf = invarea;
ls->eval_fac = 0.25f*ls->pdf;
}
else
return false;
/* compute pdf */
if(ls->t != FLT_MAX)
ls->pdf *= lamp_light_pdf(kg, ls->Ng, -ls->D, ls->t);
ls->eval_fac *= kernel_data.integrator.inv_pdf_lights;
return true;
}
/* Triangle Light */
__device void object_transform_light_sample(KernelGlobals *kg, LightSample *ls, int object, float time)
{
#ifdef __INSTANCING__
/* instance transform */
if(object >= 0) {
#ifdef __OBJECT_MOTION__
Transform itfm;
Transform tfm = object_fetch_transform_motion_test(kg, object, time, &itfm);
#else
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
#endif
ls->P = transform_point(&tfm, ls->P);
ls->Ng = normalize(transform_direction(&tfm, ls->Ng));
}
#endif
}
__device void triangle_light_sample(KernelGlobals *kg, int prim, int object,
float randu, float randv, float time, LightSample *ls)
{
/* triangle, so get position, normal, shader */
ls->P = triangle_sample_MT(kg, prim, randu, randv);
ls->Ng = triangle_normal_MT(kg, prim, &ls->shader);
ls->object = object;
ls->prim = prim;
ls->lamp = ~0;
ls->shader |= SHADER_USE_MIS;
ls->t = 0.0f;
ls->type = LIGHT_TRIANGLE;
ls->eval_fac = 1.0f;
object_transform_light_sample(kg, ls, object, time);
}
__device float triangle_light_pdf(KernelGlobals *kg,
const float3 Ng, const float3 I, float t)
{
float pdf = kernel_data.integrator.pdf_triangles;
float cos_pi = fabsf(dot(Ng, I));
if(cos_pi == 0.0f)
return 0.0f;
return t*t*pdf/cos_pi;
}
/* Curve Light */
#ifdef __HAIR__
__device void curve_segment_light_sample(KernelGlobals *kg, int prim, int object,
int segment, float randu, float randv, float time, LightSample *ls)
{
/* this strand code needs completion */
float4 v00 = kernel_tex_fetch(__curves, prim);
int k0 = __float_as_int(v00.x) + segment;
int k1 = k0 + 1;
float4 P1 = kernel_tex_fetch(__curve_keys, k0);
float4 P2 = kernel_tex_fetch(__curve_keys, k1);
float l = len(float4_to_float3(P2) - float4_to_float3(P1));
float r1 = P1.w;
float r2 = P2.w;
float3 tg = (float4_to_float3(P2) - float4_to_float3(P1)) / l;
float3 xc = make_float3(tg.x * tg.z, tg.y * tg.z, -(tg.x * tg.x + tg.y * tg.y));
if (is_zero(xc))
xc = make_float3(tg.x * tg.y, -(tg.x * tg.x + tg.z * tg.z), tg.z * tg.y);
xc = normalize(xc);
float3 yc = cross(tg, xc);
float gd = ((r2 - r1)/l);
/* normal currently ignores gradient */
ls->Ng = sinf(M_2PI_F * randv) * xc + cosf(M_2PI_F * randv) * yc;
ls->P = randu * l * tg + (gd * l + r1) * ls->Ng;
ls->object = object;
ls->prim = prim;
ls->lamp = ~0;
ls->t = 0.0f;
ls->type = LIGHT_STRAND;
ls->eval_fac = 1.0f;
ls->shader = __float_as_int(v00.z) | SHADER_USE_MIS;
object_transform_light_sample(kg, ls, object, time);
}
#endif
/* Light Distribution */
__device int light_distribution_sample(KernelGlobals *kg, float randt)
{
/* this is basically std::upper_bound as used by pbrt, to find a point light or
* triangle to emit from, proportional to area. a good improvement would be to
* also sample proportional to power, though it's not so well defined with
* OSL shaders. */
int first = 0;
int len = kernel_data.integrator.num_distribution + 1;
while(len > 0) {
int half_len = len >> 1;
int middle = first + half_len;
if(randt < kernel_tex_fetch(__light_distribution, middle).x) {
len = half_len;
}
else {
first = middle + 1;
len = len - half_len - 1;
}
}
/* clamping should not be needed but float rounding errors seem to
* make this fail on rare occasions */
return clamp(first-1, 0, kernel_data.integrator.num_distribution-1);
}
/* Generic Light */
__device void light_sample(KernelGlobals *kg, float randt, float randu, float randv, float time, float3 P, LightSample *ls)
{
/* sample index */
int index = light_distribution_sample(kg, randt);
/* fetch light data */
float4 l = kernel_tex_fetch(__light_distribution, index);
int prim = __float_as_int(l.y);
if(prim >= 0) {
int object = __float_as_int(l.w);
#ifdef __HAIR__
int segment = __float_as_int(l.z) & SHADER_MASK;
#endif
#ifdef __HAIR__
if (segment != SHADER_MASK)
curve_segment_light_sample(kg, prim, object, segment, randu, randv, time, ls);
else
#endif
triangle_light_sample(kg, prim, object, randu, randv, time, ls);
/* compute incoming direction, distance and pdf */
ls->D = normalize_len(ls->P - P, &ls->t);
ls->pdf = triangle_light_pdf(kg, ls->Ng, -ls->D, ls->t);
ls->shader |= __float_as_int(l.z) & (~SHADER_MASK);
}
else {
int lamp = -prim-1;
lamp_light_sample(kg, lamp, randu, randv, P, ls);
}
}
__device int light_select_num_samples(KernelGlobals *kg, int index)
{
float4 data3 = kernel_tex_fetch(__light_data, index*LIGHT_SIZE + 3);
return __float_as_int(data3.x);
}
__device void light_select(KernelGlobals *kg, int index, float randu, float randv, float3 P, LightSample *ls)
{
lamp_light_sample(kg, index, randu, randv, P, ls);
}
__device int lamp_light_eval_sample(KernelGlobals *kg, float randt)
{
/* sample index */
int index = light_distribution_sample(kg, randt);
/* fetch light data */
float4 l = kernel_tex_fetch(__light_distribution, index);
int prim = __float_as_int(l.y);
if(prim < 0) {
int lamp = -prim-1;
return lamp;
}
else
return ~0;
}
CCL_NAMESPACE_END