blender/intern/cycles/render/svm.cpp
2012-03-26 12:45:14 +00:00

690 lines
18 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "device.h"
#include "graph.h"
#include "light.h"
#include "mesh.h"
#include "scene.h"
#include "shader.h"
#include "svm.h"
#include "util_debug.h"
#include "util_foreach.h"
#include "util_progress.h"
CCL_NAMESPACE_BEGIN
/* Shader Manager */
SVMShaderManager::SVMShaderManager()
{
}
SVMShaderManager::~SVMShaderManager()
{
}
void SVMShaderManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
if(!need_update)
return;
/* test if we need to update */
device_free(device, dscene);
/* svm_nodes */
vector<int4> svm_nodes;
size_t i;
for(i = 0; i < scene->shaders.size(); i++) {
svm_nodes.push_back(make_int4(NODE_SHADER_JUMP, 0, 0, 0));
svm_nodes.push_back(make_int4(NODE_SHADER_JUMP, 0, 0, 0));
}
bool sunsky_done = false;
bool use_multi_closure = device->info.advanced_shading;
for(i = 0; i < scene->shaders.size(); i++) {
Shader *shader = scene->shaders[i];
if(progress.get_cancel()) return;
assert(shader->graph);
if(shader->sample_as_light && shader->has_surface_emission)
scene->light_manager->need_update = true;
SVMCompiler compiler(scene->shader_manager, scene->image_manager,
use_multi_closure);
compiler.sunsky = (sunsky_done)? NULL: &dscene->data.sunsky;
compiler.background = ((int)i == scene->default_background);
compiler.compile(shader, svm_nodes, i);
if(!compiler.sunsky)
sunsky_done = true;
}
dscene->svm_nodes.copy((uint4*)&svm_nodes[0], svm_nodes.size());
device->tex_alloc("__svm_nodes", dscene->svm_nodes);
for(i = 0; i < scene->shaders.size(); i++) {
Shader *shader = scene->shaders[i];
shader->need_update = false;
}
device_update_common(device, dscene, scene, progress);
need_update = false;
}
void SVMShaderManager::device_free(Device *device, DeviceScene *dscene)
{
device_free_common(device, dscene);
device->tex_free(dscene->svm_nodes);
dscene->svm_nodes.clear();
}
/* Graph Compiler */
SVMCompiler::SVMCompiler(ShaderManager *shader_manager_, ImageManager *image_manager_, bool use_multi_closure_)
{
shader_manager = shader_manager_;
image_manager = image_manager_;
sunsky = NULL;
max_stack_use = 0;
current_type = SHADER_TYPE_SURFACE;
current_shader = NULL;
background = false;
mix_weight_offset = SVM_STACK_INVALID;
use_multi_closure = use_multi_closure_;
}
int SVMCompiler::stack_size(ShaderSocketType type)
{
if(type == SHADER_SOCKET_FLOAT)
return 1;
else if(type == SHADER_SOCKET_COLOR)
return 3;
else if(type == SHADER_SOCKET_VECTOR)
return 3;
else if(type == SHADER_SOCKET_NORMAL)
return 3;
else if(type == SHADER_SOCKET_POINT)
return 3;
else if(type == SHADER_SOCKET_CLOSURE)
return 0;
assert(0);
return 0;
}
int SVMCompiler::stack_find_offset(ShaderSocketType type)
{
int size = stack_size(type);
int offset = -1;
/* find free space in stack & mark as used */
for(int i = 0, num_unused = 0; i < SVM_STACK_SIZE; i++) {
if(active_stack.users[i]) num_unused = 0;
else num_unused++;
if(num_unused == size) {
offset = i+1 - size;
max_stack_use = max(i+1, max_stack_use);
while(i >= offset)
active_stack.users[i--] = 1;
return offset;
}
}
fprintf(stderr, "Out of SVM stack space.\n");
assert(0);
return offset;
}
void SVMCompiler::stack_clear_offset(ShaderSocketType type, int offset)
{
int size = stack_size(type);
for(int i = 0; i < size; i++)
active_stack.users[offset + i]--;
}
void SVMCompiler::stack_backup(StackBackup& backup, set<ShaderNode*>& done)
{
backup.done = done;
backup.stack = active_stack;
foreach(ShaderNode *node, current_graph->nodes) {
foreach(ShaderInput *input, node->inputs)
backup.offsets.push_back(input->stack_offset);
foreach(ShaderOutput *output, node->outputs)
backup.offsets.push_back(output->stack_offset);
}
}
void SVMCompiler::stack_restore(StackBackup& backup, set<ShaderNode*>& done)
{
int i = 0;
done = backup.done;
active_stack = backup.stack;
foreach(ShaderNode *node, current_graph->nodes) {
foreach(ShaderInput *input, node->inputs)
input->stack_offset = backup.offsets[i++];
foreach(ShaderOutput *output, node->outputs)
output->stack_offset = backup.offsets[i++];
}
}
void SVMCompiler::stack_assign(ShaderInput *input)
{
/* stack offset assign? */
if(input->stack_offset == SVM_STACK_INVALID) {
if(input->link) {
/* linked to output -> use output offset */
input->stack_offset = input->link->stack_offset;
}
else {
/* not linked to output -> add nodes to load default value */
input->stack_offset = stack_find_offset(input->type);
if(input->type == SHADER_SOCKET_FLOAT) {
add_node(NODE_VALUE_F, __float_as_int(input->value.x), input->stack_offset);
}
else if(input->type == SHADER_SOCKET_VECTOR ||
input->type == SHADER_SOCKET_NORMAL ||
input->type == SHADER_SOCKET_POINT ||
input->type == SHADER_SOCKET_COLOR) {
add_node(NODE_VALUE_V, input->stack_offset);
add_node(NODE_VALUE_V, input->value);
}
else /* should not get called for closure */
assert(0);
}
}
}
void SVMCompiler::stack_assign(ShaderOutput *output)
{
/* if no stack offset assigned yet, find one */
if(output->stack_offset == SVM_STACK_INVALID)
output->stack_offset = stack_find_offset(output->type);
}
void SVMCompiler::stack_link(ShaderInput *input, ShaderOutput *output)
{
if(output->stack_offset == SVM_STACK_INVALID) {
assert(input->link);
assert(stack_size(output->type) == stack_size(input->link->type));
output->stack_offset = input->link->stack_offset;
int size = stack_size(output->type);
for(int i = 0; i < size; i++)
active_stack.users[output->stack_offset + i]++;
}
}
void SVMCompiler::stack_clear_users(ShaderNode *node, set<ShaderNode*>& done)
{
/* optimization we should add:
find and lower user counts for outputs for which all inputs are done.
this is done before the node is compiled, under the assumption that the
node will first load all inputs from the stack and then writes its
outputs. this used to work, but was disabled because it gave trouble
with inputs getting stack positions assigned */
foreach(ShaderInput *input, node->inputs) {
ShaderOutput *output = input->link;
if(output && output->stack_offset != SVM_STACK_INVALID) {
bool all_done = true;
/* optimization we should add: verify if in->parent is actually used */
foreach(ShaderInput *in, output->links)
if(in->parent != node && done.find(in->parent) == done.end())
all_done = false;
if(all_done) {
stack_clear_offset(output->type, output->stack_offset);
output->stack_offset = SVM_STACK_INVALID;
foreach(ShaderInput *in, output->links)
in->stack_offset = SVM_STACK_INVALID;
}
}
}
}
void SVMCompiler::stack_clear_temporary(ShaderNode *node)
{
foreach(ShaderInput *input, node->inputs) {
if(!input->link && input->stack_offset != SVM_STACK_INVALID) {
stack_clear_offset(input->type, input->stack_offset);
input->stack_offset = SVM_STACK_INVALID;
}
}
}
uint SVMCompiler::encode_uchar4(uint x, uint y, uint z, uint w)
{
assert(x <= 255);
assert(y <= 255);
assert(z <= 255);
assert(w <= 255);
return (x) | (y << 8) | (z << 16) | (w << 24);
}
void SVMCompiler::add_node(int a, int b, int c, int d)
{
svm_nodes.push_back(make_int4(a, b, c, d));
}
void SVMCompiler::add_node(NodeType type, int a, int b, int c)
{
svm_nodes.push_back(make_int4(type, a, b, c));
}
void SVMCompiler::add_node(NodeType type, const float3& f)
{
svm_nodes.push_back(make_int4(type,
__float_as_int(f.x),
__float_as_int(f.y),
__float_as_int(f.z)));
}
void SVMCompiler::add_node(const float4& f)
{
svm_nodes.push_back(make_int4(
__float_as_int(f.x),
__float_as_int(f.y),
__float_as_int(f.z),
__float_as_int(f.w)));
}
void SVMCompiler::add_array(float4 *f, int num)
{
for(int i = 0; i < num; i++)
add_node(f[i]);
}
uint SVMCompiler::attribute(ustring name)
{
return shader_manager->get_attribute_id(name);
}
uint SVMCompiler::attribute(Attribute::Standard std)
{
return shader_manager->get_attribute_id(std);
}
bool SVMCompiler::node_skip_input(ShaderNode *node, ShaderInput *input)
{
/* nasty exception .. */
if(current_type == SHADER_TYPE_DISPLACEMENT && input->link && input->link->parent->name == ustring("bump"))
return true;
return false;
}
void SVMCompiler::find_dependencies(set<ShaderNode*>& dependencies, const set<ShaderNode*>& done, ShaderInput *input)
{
ShaderNode *node = (input->link)? input->link->parent: NULL;
if(node && done.find(node) == done.end()) {
foreach(ShaderInput *in, node->inputs)
if(!node_skip_input(node, in))
find_dependencies(dependencies, done, in);
dependencies.insert(node);
}
}
void SVMCompiler::generate_svm_nodes(const set<ShaderNode*>& nodes, set<ShaderNode*>& done)
{
bool nodes_done;
do {
nodes_done = true;
foreach(ShaderNode *node, nodes) {
if(done.find(node) == done.end()) {
bool inputs_done = true;
foreach(ShaderInput *input, node->inputs)
if(!node_skip_input(node, input))
if(input->link && done.find(input->link->parent) == done.end())
inputs_done = false;
if(inputs_done) {
node->compile(*this);
stack_clear_users(node, done);
stack_clear_temporary(node);
done.insert(node);
}
else
nodes_done = false;
}
}
} while(!nodes_done);
}
void SVMCompiler::generate_closure(ShaderNode *node, set<ShaderNode*>& done)
{
if(node->name == ustring("mix_closure") || node->name == ustring("add_closure")) {
ShaderInput *fin = node->input("Fac");
ShaderInput *cl1in = node->input("Closure1");
ShaderInput *cl2in = node->input("Closure2");
/* execute dependencies for mix weight */
if(fin) {
set<ShaderNode*> dependencies;
find_dependencies(dependencies, done, fin);
generate_svm_nodes(dependencies, done);
/* add mix node */
stack_assign(fin);
}
int mix_offset = svm_nodes.size();
if(fin)
add_node(NODE_MIX_CLOSURE, fin->stack_offset, 0, 0);
else
add_node(NODE_ADD_CLOSURE, 0, 0, 0);
/* generate code for closure 1
note we backup all compiler state and restore it afterwards, so one
closure choice doesn't influence the other*/
if(cl1in->link) {
StackBackup backup;
stack_backup(backup, done);
generate_closure(cl1in->link->parent, done);
add_node(NODE_END, 0, 0, 0);
stack_restore(backup, done);
}
else
add_node(NODE_END, 0, 0, 0);
/* generate code for closure 2 */
int cl2_offset = svm_nodes.size();
if(cl2in->link) {
StackBackup backup;
stack_backup(backup, done);
generate_closure(cl2in->link->parent, done);
add_node(NODE_END, 0, 0, 0);
stack_restore(backup, done);
}
else
add_node(NODE_END, 0, 0, 0);
/* set jump for mix node, -1 because offset is already
incremented when this jump is added to it */
svm_nodes[mix_offset].z = cl2_offset - mix_offset - 1;
done.insert(node);
stack_clear_users(node, done);
stack_clear_temporary(node);
}
else {
/* execute dependencies for closure */
foreach(ShaderInput *in, node->inputs) {
if(!node_skip_input(node, in) && in->link) {
set<ShaderNode*> dependencies;
find_dependencies(dependencies, done, in);
generate_svm_nodes(dependencies, done);
}
}
/* compile closure itself */
node->compile(*this);
stack_clear_users(node, done);
stack_clear_temporary(node);
if(node->name == ustring("emission"))
current_shader->has_surface_emission = true;
if(node->name == ustring("transparent"))
current_shader->has_surface_transparent = true;
/* end node is added outside of this */
}
}
void SVMCompiler::generate_multi_closure(ShaderNode *node, set<ShaderNode*>& done, uint in_offset)
{
/* todo: the weaks point here is that unlike the single closure sampling
we will evaluate all nodes even if they are used as input for closures
that are unused. it's not clear what would be the best way to skip such
nodes at runtime, especially if they are tangled up */
if(node->name == ustring("mix_closure") || node->name == ustring("add_closure")) {
ShaderInput *fin = node->input("Fac");
ShaderInput *cl1in = node->input("Closure1");
ShaderInput *cl2in = node->input("Closure2");
uint out1_offset = SVM_STACK_INVALID;
uint out2_offset = SVM_STACK_INVALID;
if(fin) {
/* mix closure */
set<ShaderNode*> dependencies;
find_dependencies(dependencies, done, fin);
generate_svm_nodes(dependencies, done);
stack_assign(fin);
if(cl1in->link)
out1_offset = stack_find_offset(SHADER_SOCKET_FLOAT);
if(cl2in->link)
out2_offset = stack_find_offset(SHADER_SOCKET_FLOAT);
add_node(NODE_MIX_CLOSURE,
encode_uchar4(fin->stack_offset, in_offset, out1_offset, out2_offset));
}
else {
/* add closure */
out1_offset = in_offset;
out2_offset = in_offset;
}
if(cl1in->link) {
generate_multi_closure(cl1in->link->parent, done, out1_offset);
if(fin)
stack_clear_offset(SHADER_SOCKET_FLOAT, out1_offset);
}
if(cl2in->link) {
generate_multi_closure(cl2in->link->parent, done, out2_offset);
if(fin)
stack_clear_offset(SHADER_SOCKET_FLOAT, out2_offset);
}
}
else {
/* execute dependencies for closure */
foreach(ShaderInput *in, node->inputs) {
if(!node_skip_input(node, in) && in->link) {
set<ShaderNode*> dependencies;
find_dependencies(dependencies, done, in);
generate_svm_nodes(dependencies, done);
}
}
mix_weight_offset = in_offset;
/* compile closure itself */
node->compile(*this);
stack_clear_users(node, done);
stack_clear_temporary(node);
mix_weight_offset = SVM_STACK_INVALID;
if(node->name == ustring("emission"))
current_shader->has_surface_emission = true;
if(node->name == ustring("transparent"))
current_shader->has_surface_transparent = true;
/* end node is added outside of this */
}
}
void SVMCompiler::compile_type(Shader *shader, ShaderGraph *graph, ShaderType type)
{
/* Converting a shader graph into svm_nodes that can be executed
* sequentially on the virtual machine is fairly simple. We can keep
* looping over nodes and each time all the inputs of a node are
* ready, we add svm_nodes for it that read the inputs from the
* stack and write outputs back to the stack.
*
* With the SVM, we always sample only a single closure. We can think
* of all closures nodes as a binary tree with mix closures as inner
* nodes and other closures as leafs. The SVM will traverse that tree,
* each time deciding to go left or right depending on the mix weights,
* until a closure is found.
*
* We only execute nodes that are needed for the mix weights and chosen
* closure.
*/
current_type = type;
current_graph = graph;
/* get input in output node */
ShaderNode *node = graph->output();
ShaderInput *clin = NULL;
if(type == SHADER_TYPE_SURFACE)
clin = node->input("Surface");
else if(type == SHADER_TYPE_VOLUME)
clin = node->input("Volume");
else if(type == SHADER_TYPE_DISPLACEMENT)
clin = node->input("Displacement");
else
assert(0);
/* clear all compiler state */
memset(&active_stack, 0, sizeof(active_stack));
svm_nodes.clear();
foreach(ShaderNode *node, graph->nodes) {
foreach(ShaderInput *input, node->inputs)
input->stack_offset = SVM_STACK_INVALID;
foreach(ShaderOutput *output, node->outputs)
output->stack_offset = SVM_STACK_INVALID;
}
if(clin->link) {
bool generate = false;
if(type == SHADER_TYPE_SURFACE) {
/* generate surface shader */
generate = true;
shader->has_surface = true;
}
else if(type == SHADER_TYPE_VOLUME) {
/* generate volume shader */
generate = true;
shader->has_volume = true;
}
else if(type == SHADER_TYPE_DISPLACEMENT) {
/* generate displacement shader */
generate = true;
shader->has_displacement = true;
}
if(generate) {
set<ShaderNode*> done;
if(use_multi_closure)
generate_multi_closure(clin->link->parent, done, SVM_STACK_INVALID);
else
generate_closure(clin->link->parent, done);
}
}
/* compile output node */
node->compile(*this);
add_node(NODE_END, 0, 0, 0);
}
void SVMCompiler::compile(Shader *shader, vector<int4>& global_svm_nodes, int index)
{
/* copy graph for shader with bump mapping */
ShaderNode *node = shader->graph->output();
if(node->input("Surface")->link && node->input("Displacement")->link)
if(!shader->graph_bump)
shader->graph_bump = shader->graph->copy();
/* finalize */
shader->graph->finalize(false, false);
if(shader->graph_bump)
shader->graph_bump->finalize(true, false);
current_shader = shader;
shader->has_surface = false;
shader->has_surface_emission = false;
shader->has_surface_transparent = false;
shader->has_volume = false;
shader->has_displacement = false;
/* generate surface shader */
compile_type(shader, shader->graph, SHADER_TYPE_SURFACE);
global_svm_nodes[index*2 + 0].y = global_svm_nodes.size();
global_svm_nodes[index*2 + 1].y = global_svm_nodes.size();
global_svm_nodes.insert(global_svm_nodes.end(), svm_nodes.begin(), svm_nodes.end());
if(shader->graph_bump) {
compile_type(shader, shader->graph_bump, SHADER_TYPE_SURFACE);
global_svm_nodes[index*2 + 1].y = global_svm_nodes.size();
global_svm_nodes.insert(global_svm_nodes.end(), svm_nodes.begin(), svm_nodes.end());
}
/* generate volume shader */
compile_type(shader, shader->graph, SHADER_TYPE_VOLUME);
global_svm_nodes[index*2 + 0].z = global_svm_nodes.size();
global_svm_nodes[index*2 + 1].z = global_svm_nodes.size();
global_svm_nodes.insert(global_svm_nodes.end(), svm_nodes.begin(), svm_nodes.end());
/* generate displacement shader */
compile_type(shader, shader->graph, SHADER_TYPE_DISPLACEMENT);
global_svm_nodes[index*2 + 0].w = global_svm_nodes.size();
global_svm_nodes[index*2 + 1].w = global_svm_nodes.size();
global_svm_nodes.insert(global_svm_nodes.end(), svm_nodes.begin(), svm_nodes.end());
}
CCL_NAMESPACE_END