blender/intern/cycles/kernel/geom/geom_bvh_shadow.h
Martijn Berger 25ec0d97f9 make "tri_shader" an int instead of a float
tri_shader does no longer need to a float.

Reviewers: dingto, sergey

Reviewed By: dingto, sergey

Subscribers: dingto

Projects: #cycles

Differential Revision: https://developer.blender.org/D789
2014-09-24 13:34:28 +02:00

373 lines
12 KiB
C

/*
* Adapted from code Copyright 2009-2010 NVIDIA Corporation,
* and code copyright 2009-2012 Intel Corporation
*
* Modifications Copyright 2011-2013, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This is a template BVH traversal function, where various features can be
* enabled/disabled. This way we can compile optimized versions for each case
* without new features slowing things down.
*
* BVH_INSTANCING: object instancing
* BVH_HAIR: hair curve rendering
* BVH_MOTION: motion blur rendering
*
*/
#define FEATURE(f) (((BVH_FUNCTION_FEATURES) & (f)) != 0)
ccl_device bool BVH_FUNCTION_NAME
(KernelGlobals *kg, const Ray *ray, Intersection *isect_array, const uint max_hits, uint *num_hits)
{
/* todo:
* - likely and unlikely for if() statements
* - test restrict attribute for pointers
*/
/* traversal stack in CUDA thread-local memory */
int traversalStack[BVH_STACK_SIZE];
traversalStack[0] = ENTRYPOINT_SENTINEL;
/* traversal variables in registers */
int stackPtr = 0;
int nodeAddr = kernel_data.bvh.root;
/* ray parameters in registers */
const float tmax = ray->t;
float3 P = ray->P;
float3 dir = bvh_clamp_direction(ray->D);
float3 idir = bvh_inverse_direction(dir);
int object = OBJECT_NONE;
float isect_t = tmax;
#if FEATURE(BVH_MOTION)
Transform ob_tfm;
#endif
#if FEATURE(BVH_INSTANCING)
int num_hits_in_instance = 0;
#endif
*num_hits = 0;
isect_array->t = tmax;
#if defined(__KERNEL_SSE2__)
const shuffle_swap_t shuf_identity = shuffle_swap_identity();
const shuffle_swap_t shuf_swap = shuffle_swap_swap();
const ssef pn = cast(ssei(0, 0, 0x80000000, 0x80000000));
ssef Psplat[3], idirsplat[3];
shuffle_swap_t shufflexyz[3];
Psplat[0] = ssef(P.x);
Psplat[1] = ssef(P.y);
Psplat[2] = ssef(P.z);
ssef tsplat(0.0f, 0.0f, -isect_t, -isect_t);
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif
/* traversal loop */
do {
do {
/* traverse internal nodes */
while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) {
bool traverseChild0, traverseChild1;
int nodeAddrChild1;
#if !defined(__KERNEL_SSE2__)
/* Intersect two child bounding boxes, non-SSE version */
float t = isect_t;
/* fetch node data */
float4 node0 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0);
float4 node1 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1);
float4 node2 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2);
float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3);
/* intersect ray against child nodes */
NO_EXTENDED_PRECISION float c0lox = (node0.x - P.x) * idir.x;
NO_EXTENDED_PRECISION float c0hix = (node0.z - P.x) * idir.x;
NO_EXTENDED_PRECISION float c0loy = (node1.x - P.y) * idir.y;
NO_EXTENDED_PRECISION float c0hiy = (node1.z - P.y) * idir.y;
NO_EXTENDED_PRECISION float c0loz = (node2.x - P.z) * idir.z;
NO_EXTENDED_PRECISION float c0hiz = (node2.z - P.z) * idir.z;
NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f);
NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t);
NO_EXTENDED_PRECISION float c1lox = (node0.y - P.x) * idir.x;
NO_EXTENDED_PRECISION float c1hix = (node0.w - P.x) * idir.x;
NO_EXTENDED_PRECISION float c1loy = (node1.y - P.y) * idir.y;
NO_EXTENDED_PRECISION float c1hiy = (node1.w - P.y) * idir.y;
NO_EXTENDED_PRECISION float c1loz = (node2.y - P.z) * idir.z;
NO_EXTENDED_PRECISION float c1hiz = (node2.w - P.z) * idir.z;
NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f);
NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t);
/* decide which nodes to traverse next */
#ifdef __VISIBILITY_FLAG__
/* this visibility test gives a 5% performance hit, how to solve? */
traverseChild0 = (c0max >= c0min) && (__float_as_uint(cnodes.z) & PATH_RAY_SHADOW);
traverseChild1 = (c1max >= c1min) && (__float_as_uint(cnodes.w) & PATH_RAY_SHADOW);
#else
traverseChild0 = (c0max >= c0min);
traverseChild1 = (c1max >= c1min);
#endif
#else // __KERNEL_SSE2__
/* Intersect two child bounding boxes, SSE3 version adapted from Embree */
/* fetch node data */
const ssef *bvh_nodes = (ssef*)kg->__bvh_nodes.data + nodeAddr*BVH_NODE_SIZE;
const float4 cnodes = ((float4*)bvh_nodes)[3];
/* intersect ray against child nodes */
const ssef tminmaxx = (shuffle_swap(bvh_nodes[0], shufflexyz[0]) - Psplat[0]) * idirsplat[0];
const ssef tminmaxy = (shuffle_swap(bvh_nodes[1], shufflexyz[1]) - Psplat[1]) * idirsplat[1];
const ssef tminmaxz = (shuffle_swap(bvh_nodes[2], shufflexyz[2]) - Psplat[2]) * idirsplat[2];
/* calculate { c0min, c1min, -c0max, -c1max} */
const ssef minmax = max(max(tminmaxx, tminmaxy), max(tminmaxz, tsplat));
const ssef tminmax = minmax ^ pn;
const sseb lrhit = tminmax <= shuffle<2, 3, 0, 1>(tminmax);
/* decide which nodes to traverse next */
#ifdef __VISIBILITY_FLAG__
/* this visibility test gives a 5% performance hit, how to solve? */
traverseChild0 = (movemask(lrhit) & 1) && (__float_as_uint(cnodes.z) & PATH_RAY_SHADOW);
traverseChild1 = (movemask(lrhit) & 2) && (__float_as_uint(cnodes.w) & PATH_RAY_SHADOW);
#else
traverseChild0 = (movemask(lrhit) & 1);
traverseChild1 = (movemask(lrhit) & 2);
#endif
#endif // __KERNEL_SSE2__
nodeAddr = __float_as_int(cnodes.x);
nodeAddrChild1 = __float_as_int(cnodes.y);
if(traverseChild0 && traverseChild1) {
/* both children were intersected, push the farther one */
#if !defined(__KERNEL_SSE2__)
bool closestChild1 = (c1min < c0min);
#else
bool closestChild1 = tminmax[1] < tminmax[0];
#endif
if(closestChild1) {
int tmp = nodeAddr;
nodeAddr = nodeAddrChild1;
nodeAddrChild1 = tmp;
}
++stackPtr;
traversalStack[stackPtr] = nodeAddrChild1;
}
else {
/* one child was intersected */
if(traverseChild1) {
nodeAddr = nodeAddrChild1;
}
else if(!traverseChild0) {
/* neither child was intersected */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
}
}
/* if node is leaf, fetch triangle list */
if(nodeAddr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1));
int primAddr = __float_as_int(leaf.x);
#if FEATURE(BVH_INSTANCING)
if(primAddr >= 0) {
#endif
int primAddr2 = __float_as_int(leaf.y);
/* pop */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
/* primitive intersection */
while(primAddr < primAddr2) {
bool hit;
uint type = kernel_tex_fetch(__prim_type, primAddr);
/* todo: specialized intersect functions which don't fill in
* isect unless needed and check SD_HAS_TRANSPARENT_SHADOW?
* might give a few % performance improvement */
switch(type & PRIMITIVE_ALL) {
case PRIMITIVE_TRIANGLE: {
hit = triangle_intersect(kg, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr);
break;
}
#if FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, PATH_RAY_SHADOW, object, primAddr);
break;
}
#endif
#if FEATURE(BVH_HAIR)
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE)
hit = bvh_cardinal_curve_intersect(kg, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr, ray->time, type, NULL, 0, 0);
else
hit = bvh_curve_intersect(kg, isect_array, P, dir, PATH_RAY_SHADOW, object, primAddr, ray->time, type, NULL, 0, 0);
break;
}
#endif
default: {
hit = false;
break;
}
}
/* shadow ray early termination */
if(hit) {
/* detect if this surface has a shader with transparent shadows */
/* todo: optimize so primitive visibility flag indicates if
* the primitive has a transparent shadow shader? */
int prim = kernel_tex_fetch(__prim_index, isect_array->prim);
int shader = 0;
#ifdef __HAIR__
if(kernel_tex_fetch(__prim_type, isect_array->prim) & PRIMITIVE_ALL_TRIANGLE)
#endif
{
shader = kernel_tex_fetch(__tri_shader, prim);
}
#ifdef __HAIR__
else {
float4 str = kernel_tex_fetch(__curves, prim);
shader = __float_as_int(str.z);
}
#endif
int flag = kernel_tex_fetch(__shader_flag, (shader & SHADER_MASK)*2);
/* if no transparent shadows, all light is blocked */
if(!(flag & SD_HAS_TRANSPARENT_SHADOW)) {
return true;
}
/* if maximum number of hits reached, block all light */
else if(*num_hits == max_hits) {
return true;
}
/* move on to next entry in intersections array */
isect_array++;
(*num_hits)++;
#if FEATURE(BVH_INSTANCING)
num_hits_in_instance++;
#endif
isect_array->t = isect_t;
}
primAddr++;
}
}
#if FEATURE(BVH_INSTANCING)
else {
/* instance push */
object = kernel_tex_fetch(__prim_object, -primAddr-1);
#if FEATURE(BVH_MOTION)
bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_tfm);
#else
bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t);
#endif
num_hits_in_instance = 0;
#if defined(__KERNEL_SSE2__)
Psplat[0] = ssef(P.x);
Psplat[1] = ssef(P.y);
Psplat[2] = ssef(P.z);
isect_array->t = isect_t;
tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t);
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif
++stackPtr;
traversalStack[stackPtr] = ENTRYPOINT_SENTINEL;
nodeAddr = kernel_tex_fetch(__object_node, object);
}
}
#endif
} while(nodeAddr != ENTRYPOINT_SENTINEL);
#if FEATURE(BVH_INSTANCING)
if(stackPtr >= 0) {
kernel_assert(object != OBJECT_NONE);
if(num_hits_in_instance) {
float t_fac;
#if FEATURE(BVH_MOTION)
bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_tfm);
#else
bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
#endif
/* scale isect->t to adjust for instancing */
for(int i = 0; i < num_hits_in_instance; i++)
(isect_array-i-1)->t *= t_fac;
}
else {
float ignore_t = FLT_MAX;
#if FEATURE(BVH_MOTION)
bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_tfm);
#else
bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t);
#endif
}
#if defined(__KERNEL_SSE2__)
Psplat[0] = ssef(P.x);
Psplat[1] = ssef(P.y);
Psplat[2] = ssef(P.z);
isect_t = tmax;
isect_array->t = isect_t;
tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t);
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif
object = OBJECT_NONE;
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
#endif
} while(nodeAddr != ENTRYPOINT_SENTINEL);
return false;
}
#undef FEATURE
#undef BVH_FUNCTION_NAME
#undef BVH_FUNCTION_FEATURES