blender/intern/cycles/kernel/kernel_projection.h
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

272 lines
8.2 KiB
C

/*
* Parts adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __KERNEL_PROJECTION_CL__
#define __KERNEL_PROJECTION_CL__
CCL_NAMESPACE_BEGIN
/* Spherical coordinates <-> Cartesian direction */
ccl_device float2 direction_to_spherical(float3 dir)
{
float theta = safe_acosf(dir.z);
float phi = atan2f(dir.x, dir.y);
return make_float2(theta, phi);
}
ccl_device float3 spherical_to_direction(float theta, float phi)
{
float sin_theta = sinf(theta);
return make_float3(sin_theta*cosf(phi),
sin_theta*sinf(phi),
cosf(theta));
}
/* Equirectangular coordinates <-> Cartesian direction */
ccl_device float2 direction_to_equirectangular_range(float3 dir, float4 range)
{
if(is_zero(dir))
return make_float2(0.0f, 0.0f);
float u = (atan2f(dir.y, dir.x) - range.y) / range.x;
float v = (acosf(dir.z / len(dir)) - range.w) / range.z;
return make_float2(u, v);
}
ccl_device float3 equirectangular_range_to_direction(float u, float v, float4 range)
{
float phi = range.x*u + range.y;
float theta = range.z*v + range.w;
float sin_theta = sinf(theta);
return make_float3(sin_theta*cosf(phi),
sin_theta*sinf(phi),
cosf(theta));
}
ccl_device float2 direction_to_equirectangular(float3 dir)
{
return direction_to_equirectangular_range(dir, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
}
ccl_device float3 equirectangular_to_direction(float u, float v)
{
return equirectangular_range_to_direction(u, v, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
}
/* Fisheye <-> Cartesian direction */
ccl_device float2 direction_to_fisheye(float3 dir, float fov)
{
float r = atan2f(sqrtf(dir.y*dir.y + dir.z*dir.z), dir.x) / fov;
float phi = atan2f(dir.z, dir.y);
float u = r * cosf(phi) + 0.5f;
float v = r * sinf(phi) + 0.5f;
return make_float2(u, v);
}
ccl_device float3 fisheye_to_direction(float u, float v, float fov)
{
u = (u - 0.5f) * 2.0f;
v = (v - 0.5f) * 2.0f;
float r = sqrtf(u*u + v*v);
if(r > 1.0f)
return make_float3(0.0f, 0.0f, 0.0f);
float phi = safe_acosf((r != 0.0f)? u/r: 0.0f);
float theta = r * fov * 0.5f;
if(v < 0.0f) phi = -phi;
return make_float3(
cosf(theta),
-cosf(phi)*sinf(theta),
sinf(phi)*sinf(theta)
);
}
ccl_device float2 direction_to_fisheye_equisolid(float3 dir, float lens, float width, float height)
{
float theta = safe_acosf(dir.x);
float r = 2.0f * lens * sinf(theta * 0.5f);
float phi = atan2f(dir.z, dir.y);
float u = r * cosf(phi) / width + 0.5f;
float v = r * sinf(phi) / height + 0.5f;
return make_float2(u, v);
}
ccl_device_inline float3 fisheye_equisolid_to_direction(float u, float v,
float lens,
float fov,
float width, float height)
{
u = (u - 0.5f) * width;
v = (v - 0.5f) * height;
float rmax = 2.0f * lens * sinf(fov * 0.25f);
float r = sqrtf(u*u + v*v);
if(r > rmax)
return make_float3(0.0f, 0.0f, 0.0f);
float phi = safe_acosf((r != 0.0f)? u/r: 0.0f);
float theta = 2.0f * asinf(r/(2.0f * lens));
if(v < 0.0f) phi = -phi;
return make_float3(
cosf(theta),
-cosf(phi)*sinf(theta),
sinf(phi)*sinf(theta)
);
}
/* Mirror Ball <-> Cartesion direction */
ccl_device float3 mirrorball_to_direction(float u, float v)
{
/* point on sphere */
float3 dir;
dir.x = 2.0f*u - 1.0f;
dir.z = 2.0f*v - 1.0f;
if(dir.x*dir.x + dir.z*dir.z > 1.0f)
return make_float3(0.0f, 0.0f, 0.0f);
dir.y = -sqrtf(max(1.0f - dir.x*dir.x - dir.z*dir.z, 0.0f));
/* reflection */
float3 I = make_float3(0.0f, -1.0f, 0.0f);
return 2.0f*dot(dir, I)*dir - I;
}
ccl_device float2 direction_to_mirrorball(float3 dir)
{
/* inverse of mirrorball_to_direction */
dir.y -= 1.0f;
float div = 2.0f*sqrtf(max(-0.5f*dir.y, 0.0f));
if(div > 0.0f)
dir /= div;
float u = 0.5f*(dir.x + 1.0f);
float v = 0.5f*(dir.z + 1.0f);
return make_float2(u, v);
}
ccl_device_inline float3 panorama_to_direction(KernelGlobals *kg, float u, float v)
{
switch(kernel_data.cam.panorama_type) {
case PANORAMA_EQUIRECTANGULAR:
return equirectangular_range_to_direction(u, v, kernel_data.cam.equirectangular_range);
case PANORAMA_MIRRORBALL:
return mirrorball_to_direction(u, v);
case PANORAMA_FISHEYE_EQUIDISTANT:
return fisheye_to_direction(u, v, kernel_data.cam.fisheye_fov);
case PANORAMA_FISHEYE_EQUISOLID:
default:
return fisheye_equisolid_to_direction(u, v, kernel_data.cam.fisheye_lens,
kernel_data.cam.fisheye_fov, kernel_data.cam.sensorwidth, kernel_data.cam.sensorheight);
}
}
ccl_device_inline float2 direction_to_panorama(KernelGlobals *kg, float3 dir)
{
switch(kernel_data.cam.panorama_type) {
case PANORAMA_EQUIRECTANGULAR:
return direction_to_equirectangular_range(dir, kernel_data.cam.equirectangular_range);
case PANORAMA_MIRRORBALL:
return direction_to_mirrorball(dir);
case PANORAMA_FISHEYE_EQUIDISTANT:
return direction_to_fisheye(dir, kernel_data.cam.fisheye_fov);
case PANORAMA_FISHEYE_EQUISOLID:
default:
return direction_to_fisheye_equisolid(dir, kernel_data.cam.fisheye_lens,
kernel_data.cam.sensorwidth, kernel_data.cam.sensorheight);
}
}
ccl_device_inline void spherical_stereo_transform(KernelGlobals *kg, float3 *P, float3 *D)
{
float interocular_offset = kernel_data.cam.interocular_offset;
/* Interocular offset of zero means either non stereo, or stereo without
* spherical stereo. */
kernel_assert(interocular_offset != 0.0f);
if(kernel_data.cam.pole_merge_angle_to > 0.0f) {
const float pole_merge_angle_from = kernel_data.cam.pole_merge_angle_from,
pole_merge_angle_to = kernel_data.cam.pole_merge_angle_to;
float altitude = fabsf(safe_asinf((*D).z));
if(altitude > pole_merge_angle_to) {
interocular_offset = 0.0f;
}
else if(altitude > pole_merge_angle_from) {
float fac = (altitude - pole_merge_angle_from) / (pole_merge_angle_to - pole_merge_angle_from);
float fade = cosf(fac * M_PI_2_F);
interocular_offset *= fade;
}
}
float3 up = make_float3(0.0f, 0.0f, 1.0f);
float3 side = normalize(cross(*D, up));
float3 stereo_offset = side * interocular_offset;
*P += stereo_offset;
/* Convergence distance is FLT_MAX in the case of parallel convergence mode,
* no need to modify direction in this case either. */
const float convergence_distance = kernel_data.cam.convergence_distance;
if(convergence_distance != FLT_MAX)
{
float3 screen_offset = convergence_distance * (*D);
*D = normalize(screen_offset - stereo_offset);
}
}
CCL_NAMESPACE_END
#endif /* __KERNEL_PROJECTION_CL__ */