blender/release/scripts/io/export_x3d.py
Campbell Barton 67cfc427ee PyAPI
- added new mathutils.Color() type, use with rna so we can do for eg:
 material.diffuse_color.r = 1.0
 # also has hsv access
 material.diffuse_color.s = 0.6

 - made Mathutils and Geometry module names lowercase.
2010-04-11 14:22:27 +00:00

1266 lines
54 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
__author__ = ("Bart", "Campbell Barton")
__email__ = ["Bart, bart:neeneenee*de"]
__url__ = ["Author's (Bart) homepage, http://www.neeneenee.de/vrml"]
__version__ = "2006/01/17"
__bpydoc__ = """\
This script exports to X3D format.
Usage:
Run this script from "File->Export" menu. A pop-up will ask whether you
want to export only selected or all relevant objects.
Known issues:<br>
Doesn't handle multiple materials (don't use material indices);<br>
Doesn't handle multiple UV textures on a single mesh (create a mesh for each texture);<br>
Can't get the texture array associated with material * not the UV ones;
"""
# $Id$
#
#------------------------------------------------------------------------
# X3D exporter for blender 2.36 or above
#
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ***** END GPL LICENCE BLOCK *****
#
####################################
# Library dependancies
####################################
import math
import os
import bpy
import mathutils
from export_3ds import create_derived_objects, free_derived_objects
# import Blender
# from Blender import Object, Lamp, Draw, Image, Text, sys, Mesh
# from Blender.Scene import Render
# import BPyObject
# import BPyMesh
#
DEG2RAD=0.017453292519943295
MATWORLD= mathutils.RotationMatrix(-90, 4, 'X')
####################################
# Global Variables
####################################
filename = ""
# filename = Blender.Get('filename')
_safeOverwrite = True
extension = ''
##########################################################
# Functions for writing output file
##########################################################
class x3d_class:
def __init__(self, filename):
#--- public you can change these ---
self.writingcolor = 0
self.writingtexture = 0
self.writingcoords = 0
self.proto = 1
self.matonly = 0
self.share = 0
self.billnode = 0
self.halonode = 0
self.collnode = 0
self.tilenode = 0
self.verbose=2 # level of verbosity in console 0-none, 1-some, 2-most
self.cp=3 # decimals for material color values 0.000 - 1.000
self.vp=3 # decimals for vertex coordinate values 0.000 - n.000
self.tp=3 # decimals for texture coordinate values 0.000 - 1.000
self.it=3
#--- class private don't touch ---
self.texNames={} # dictionary of textureNames
self.matNames={} # dictionary of materiaNames
self.meshNames={} # dictionary of meshNames
self.indentLevel=0 # keeps track of current indenting
self.filename=filename
self.file = None
if filename.lower().endswith('.x3dz'):
try:
import gzip
self.file = gzip.open(filename, "w")
except:
print("failed to import compression modules, exporting uncompressed")
self.filename = filename[:-1] # remove trailing z
if self.file == None:
self.file = open(self.filename, "w")
self.bNav=0
self.nodeID=0
self.namesReserved=[ "Anchor","Appearance","Arc2D","ArcClose2D","AudioClip","Background","Billboard",
"BooleanFilter","BooleanSequencer","BooleanToggle","BooleanTrigger","Box","Circle2D",
"Collision","Color","ColorInterpolator","ColorRGBA","component","Cone","connect",
"Contour2D","ContourPolyline2D","Coordinate","CoordinateDouble","CoordinateInterpolator",
"CoordinateInterpolator2D","Cylinder","CylinderSensor","DirectionalLight","Disk2D",
"ElevationGrid","EspduTransform","EXPORT","ExternProtoDeclare","Extrusion","field",
"fieldValue","FillProperties","Fog","FontStyle","GeoCoordinate","GeoElevationGrid",
"GeoLocationLocation","GeoLOD","GeoMetadata","GeoOrigin","GeoPositionInterpolator",
"GeoTouchSensor","GeoViewpoint","Group","HAnimDisplacer","HAnimHumanoid","HAnimJoint",
"HAnimSegment","HAnimSite","head","ImageTexture","IMPORT","IndexedFaceSet",
"IndexedLineSet","IndexedTriangleFanSet","IndexedTriangleSet","IndexedTriangleStripSet",
"Inline","IntegerSequencer","IntegerTrigger","IS","KeySensor","LineProperties","LineSet",
"LoadSensor","LOD","Material","meta","MetadataDouble","MetadataFloat","MetadataInteger",
"MetadataSet","MetadataString","MovieTexture","MultiTexture","MultiTextureCoordinate",
"MultiTextureTransform","NavigationInfo","Normal","NormalInterpolator","NurbsCurve",
"NurbsCurve2D","NurbsOrientationInterpolator","NurbsPatchSurface",
"NurbsPositionInterpolator","NurbsSet","NurbsSurfaceInterpolator","NurbsSweptSurface",
"NurbsSwungSurface","NurbsTextureCoordinate","NurbsTrimmedSurface","OrientationInterpolator",
"PixelTexture","PlaneSensor","PointLight","PointSet","Polyline2D","Polypoint2D",
"PositionInterpolator","PositionInterpolator2D","ProtoBody","ProtoDeclare","ProtoInstance",
"ProtoInterface","ProximitySensor","ReceiverPdu","Rectangle2D","ROUTE","ScalarInterpolator",
"Scene","Script","Shape","SignalPdu","Sound","Sphere","SphereSensor","SpotLight","StaticGroup",
"StringSensor","Switch","Text","TextureBackground","TextureCoordinate","TextureCoordinateGenerator",
"TextureTransform","TimeSensor","TimeTrigger","TouchSensor","Transform","TransmitterPdu",
"TriangleFanSet","TriangleSet","TriangleSet2D","TriangleStripSet","Viewpoint","VisibilitySensor",
"WorldInfo","X3D","XvlShell","VertexShader","FragmentShader","MultiShaderAppearance","ShaderAppearance" ]
self.namesStandard=[ "Empty","Empty.000","Empty.001","Empty.002","Empty.003","Empty.004","Empty.005",
"Empty.006","Empty.007","Empty.008","Empty.009","Empty.010","Empty.011","Empty.012",
"Scene.001","Scene.002","Scene.003","Scene.004","Scene.005","Scene.06","Scene.013",
"Scene.006","Scene.007","Scene.008","Scene.009","Scene.010","Scene.011","Scene.012",
"World","World.000","World.001","World.002","World.003","World.004","World.005" ]
self.namesFog=[ "","LINEAR","EXPONENTIAL","" ]
##########################################################
# Writing nodes routines
##########################################################
def writeHeader(self):
#bfile = sys.expandpath( Blender.Get('filename') ).replace('<', '&lt').replace('>', '&gt')
bfile = self.filename.replace('<', '&lt').replace('>', '&gt') # use outfile name
self.file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
self.file.write("<!DOCTYPE X3D PUBLIC \"ISO//Web3D//DTD X3D 3.0//EN\" \"http://www.web3d.org/specifications/x3d-3.0.dtd\">\n")
self.file.write("<X3D version=\"3.0\" profile=\"Immersive\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema-instance\" xsd:noNamespaceSchemaLocation=\"http://www.web3d.org/specifications/x3d-3.0.xsd\">\n")
self.file.write("<head>\n")
self.file.write("\t<meta name=\"filename\" content=\"%s\" />\n" % os.path.basename(bfile))
# self.file.write("\t<meta name=\"filename\" content=\"%s\" />\n" % sys.basename(bfile))
self.file.write("\t<meta name=\"generator\" content=\"Blender %s\" />\n" % '2.5')
# self.file.write("\t<meta name=\"generator\" content=\"Blender %s\" />\n" % Blender.Get('version'))
self.file.write("\t<meta name=\"translator\" content=\"X3D exporter v1.55 (2006/01/17)\" />\n")
self.file.write("</head>\n")
self.file.write("<Scene>\n")
# This functionality is poorly defined, disabling for now - campbell
'''
def writeInline(self):
inlines = Blender.Scene.Get()
allinlines = len(inlines)
if scene != inlines[0]:
return
else:
for i in xrange(allinlines):
nameinline=inlines[i].name
if (nameinline not in self.namesStandard) and (i > 0):
self.file.write("<Inline DEF=\"%s\" " % (self.cleanStr(nameinline)))
nameinline = nameinline+".x3d"
self.file.write("url=\"%s\" />" % nameinline)
self.file.write("\n\n")
def writeScript(self):
textEditor = Blender.Text.Get()
alltext = len(textEditor)
for i in xrange(alltext):
nametext = textEditor[i].name
nlines = textEditor[i].getNLines()
if (self.proto == 1):
if (nametext == "proto" or nametext == "proto.js" or nametext == "proto.txt") and (nlines != None):
nalllines = len(textEditor[i].asLines())
alllines = textEditor[i].asLines()
for j in xrange(nalllines):
self.writeIndented(alllines[j] + "\n")
elif (self.proto == 0):
if (nametext == "route" or nametext == "route.js" or nametext == "route.txt") and (nlines != None):
nalllines = len(textEditor[i].asLines())
alllines = textEditor[i].asLines()
for j in xrange(nalllines):
self.writeIndented(alllines[j] + "\n")
self.writeIndented("\n")
'''
def writeViewpoint(self, ob, mat, scene):
context = scene.render
# context = scene.render
ratio = float(context.resolution_x)/float(context.resolution_y)
# ratio = float(context.imageSizeY())/float(context.imageSizeX())
lens = (360* (math.atan(ratio *16 / ob.data.lens) / math.pi))*(math.pi/180)
# lens = (360* (math.atan(ratio *16 / ob.data.getLens()) / math.pi))*(math.pi/180)
lens = min(lens, math.pi)
# get the camera location, subtract 90 degress from X to orient like X3D does
# mat = ob.matrixWorld - mat is now passed!
loc = self.rotatePointForVRML(mat.translation_part())
rot = mat.to_euler()
rot = (((rot[0]-90)), rot[1], rot[2])
# rot = (((rot[0]-90)*DEG2RAD), rot[1]*DEG2RAD, rot[2]*DEG2RAD)
nRot = self.rotatePointForVRML( rot )
# convert to Quaternion and to Angle Axis
Q = self.eulerToQuaternions(nRot[0], nRot[1], nRot[2])
Q1 = self.multiplyQuaternions(Q[0], Q[1])
Qf = self.multiplyQuaternions(Q1, Q[2])
angleAxis = self.quaternionToAngleAxis(Qf)
self.file.write("<Viewpoint DEF=\"%s\" " % (self.cleanStr(ob.name)))
self.file.write("description=\"%s\" " % (ob.name))
self.file.write("centerOfRotation=\"0 0 0\" ")
self.file.write("position=\"%3.2f %3.2f %3.2f\" " % (loc[0], loc[1], loc[2]))
self.file.write("orientation=\"%3.2f %3.2f %3.2f %3.2f\" " % (angleAxis[0], angleAxis[1], -angleAxis[2], angleAxis[3]))
self.file.write("fieldOfView=\"%.3f\" />\n\n" % (lens))
def writeFog(self, world):
if world:
mtype = world.mist.falloff
# mtype = world.getMistype()
mparam = world.mist
# mparam = world.getMist()
grd = world.horizon_color
# grd = world.getHor()
grd0, grd1, grd2 = grd[0], grd[1], grd[2]
else:
return
if (mtype == 'LINEAR' or mtype == 'INVERSE_QUADRATIC'):
mtype = 1 if mtype == 'LINEAR' else 2
# if (mtype == 1 or mtype == 2):
self.file.write("<Fog fogType=\"%s\" " % self.namesFog[mtype])
self.file.write("color=\"%s %s %s\" " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.file.write("visibilityRange=\"%s\" />\n\n" % round(mparam[2],self.cp))
else:
return
def writeNavigationInfo(self, scene):
self.file.write('<NavigationInfo headlight="FALSE" visibilityLimit="0.0" type=\'"EXAMINE","ANY"\' avatarSize="0.25, 1.75, 0.75" />\n')
def writeSpotLight(self, ob, mtx, lamp, world):
safeName = self.cleanStr(ob.name)
if world:
ambi = world.ambient_color
# ambi = world.amb
ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
else:
ambi = 0
ambientIntensity = 0
# compute cutoff and beamwidth
intensity=min(lamp.energy/1.75,1.0)
beamWidth=lamp.spot_size * 0.37;
# beamWidth=((lamp.spotSize*math.pi)/180.0)*.37;
cutOffAngle=beamWidth*1.3
dx,dy,dz=self.computeDirection(mtx)
# note -dx seems to equal om[3][0]
# note -dz seems to equal om[3][1]
# note dy seems to equal om[3][2]
#location=(ob.matrixWorld*MATWORLD).translation_part() # now passed
location=(mtx*MATWORLD).translation_part()
radius = lamp.distance*math.cos(beamWidth)
# radius = lamp.dist*math.cos(beamWidth)
self.file.write("<SpotLight DEF=\"%s\" " % safeName)
self.file.write("radius=\"%s\" " % (round(radius,self.cp)))
self.file.write("ambientIntensity=\"%s\" " % (round(ambientIntensity,self.cp)))
self.file.write("intensity=\"%s\" " % (round(intensity,self.cp)))
self.file.write("color=\"%s %s %s\" " % (round(lamp.color[0],self.cp), round(lamp.color[1],self.cp), round(lamp.color[2],self.cp)))
# self.file.write("color=\"%s %s %s\" " % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
self.file.write("beamWidth=\"%s\" " % (round(beamWidth,self.cp)))
self.file.write("cutOffAngle=\"%s\" " % (round(cutOffAngle,self.cp)))
self.file.write("direction=\"%s %s %s\" " % (round(dx,3),round(dy,3),round(dz,3)))
self.file.write("location=\"%s %s %s\" />\n\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
def writeDirectionalLight(self, ob, mtx, lamp, world):
safeName = self.cleanStr(ob.name)
if world:
ambi = world.ambient_color
# ambi = world.amb
ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
else:
ambi = 0
ambientIntensity = 0
intensity=min(lamp.energy/1.75,1.0)
(dx,dy,dz)=self.computeDirection(mtx)
self.file.write("<DirectionalLight DEF=\"%s\" " % safeName)
self.file.write("ambientIntensity=\"%s\" " % (round(ambientIntensity,self.cp)))
self.file.write("color=\"%s %s %s\" " % (round(lamp.color[0],self.cp), round(lamp.color[1],self.cp), round(lamp.color[2],self.cp)))
# self.file.write("color=\"%s %s %s\" " % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
self.file.write("intensity=\"%s\" " % (round(intensity,self.cp)))
self.file.write("direction=\"%s %s %s\" />\n\n" % (round(dx,4),round(dy,4),round(dz,4)))
def writePointLight(self, ob, mtx, lamp, world):
safeName = self.cleanStr(ob.name)
if world:
ambi = world.ambient_color
# ambi = world.amb
ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
else:
ambi = 0
ambientIntensity = 0
# location=(ob.matrixWorld*MATWORLD).translation_part() # now passed
location= (mtx*MATWORLD).translation_part()
self.file.write("<PointLight DEF=\"%s\" " % safeName)
self.file.write("ambientIntensity=\"%s\" " % (round(ambientIntensity,self.cp)))
self.file.write("color=\"%s %s %s\" " % (round(lamp.color[0],self.cp), round(lamp.color[1],self.cp), round(lamp.color[2],self.cp)))
# self.file.write("color=\"%s %s %s\" " % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
self.file.write("intensity=\"%s\" " % (round( min(lamp.energy/1.75,1.0) ,self.cp)))
self.file.write("radius=\"%s\" " % lamp.distance )
# self.file.write("radius=\"%s\" " % lamp.dist )
self.file.write("location=\"%s %s %s\" />\n\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
'''
def writeNode(self, ob, mtx):
obname=str(ob.name)
if obname in self.namesStandard:
return
else:
dx,dy,dz = self.computeDirection(mtx)
# location=(ob.matrixWorld*MATWORLD).translation_part()
location=(mtx*MATWORLD).translation_part()
self.writeIndented("<%s\n" % obname,1)
self.writeIndented("direction=\"%s %s %s\"\n" % (round(dx,3),round(dy,3),round(dz,3)))
self.writeIndented("location=\"%s %s %s\"\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
self.writeIndented("/>\n",-1)
self.writeIndented("\n")
'''
def secureName(self, name):
name = name + str(self.nodeID)
self.nodeID=self.nodeID+1
if len(name) <= 3:
newname = "_" + str(self.nodeID)
return "%s" % (newname)
else:
for bad in ['"','#',"'",',','.','[','\\',']','{','}']:
name=name.replace(bad,'_')
if name in self.namesReserved:
newname = name[0:3] + "_" + str(self.nodeID)
return "%s" % (newname)
elif name[0].isdigit():
newname = "_" + name + str(self.nodeID)
return "%s" % (newname)
else:
newname = name
return "%s" % (newname)
def writeIndexedFaceSet(self, ob, mesh, mtx, world, EXPORT_TRI = False):
imageMap={} # set of used images
sided={} # 'one':cnt , 'two':cnt
vColors={} # 'multi':1
meshName = self.cleanStr(ob.name)
meshME = self.cleanStr(ob.data.name) # We dont care if its the mesh name or not
# meshME = self.cleanStr(ob.getData(mesh=1).name) # We dont care if its the mesh name or not
if len(mesh.faces) == 0: return
mode = []
# mode = 0
if mesh.active_uv_texture:
# if mesh.faceUV:
for face in mesh.active_uv_texture.data:
# for face in mesh.faces:
if face.halo and 'HALO' not in mode:
mode += ['HALO']
if face.billboard and 'BILLBOARD' not in mode:
mode += ['BILLBOARD']
if face.object_color and 'OBJECT_COLOR' not in mode:
mode += ['OBJECT_COLOR']
if face.collision and 'COLLISION' not in mode:
mode += ['COLLISION']
# mode |= face.mode
if 'HALO' in mode and self.halonode == 0:
# if mode & Mesh.FaceModes.HALO and self.halonode == 0:
self.writeIndented("<Billboard axisOfRotation=\"0 0 0\">\n",1)
self.halonode = 1
elif 'BILLBOARD' in mode and self.billnode == 0:
# elif mode & Mesh.FaceModes.BILLBOARD and self.billnode == 0:
self.writeIndented("<Billboard axisOfRotation=\"0 1 0\">\n",1)
self.billnode = 1
elif 'OBJECT_COLOR' in mode and self.matonly == 0:
# elif mode & Mesh.FaceModes.OBCOL and self.matonly == 0:
self.matonly = 1
# TF_TILES is marked as deprecated in DNA_meshdata_types.h
# elif mode & Mesh.FaceModes.TILES and self.tilenode == 0:
# self.tilenode = 1
elif 'COLLISION' not in mode and self.collnode == 0:
# elif not mode & Mesh.FaceModes.DYNAMIC and self.collnode == 0:
self.writeIndented("<Collision enabled=\"false\">\n",1)
self.collnode = 1
nIFSCnt=self.countIFSSetsNeeded(mesh, imageMap, sided, vColors)
if nIFSCnt > 1:
self.writeIndented("<Group DEF=\"%s%s\">\n" % ("G_", meshName),1)
if 'two' in sided and sided['two'] > 0:
bTwoSided=1
else:
bTwoSided=0
# mtx = ob.matrixWorld * MATWORLD # mtx is now passed
mtx = mtx * MATWORLD
loc= mtx.translation_part()
sca= mtx.scale_part()
quat = mtx.to_quat()
rot= quat.axis
self.writeIndented('<Transform DEF="%s" translation="%.6f %.6f %.6f" scale="%.6f %.6f %.6f" rotation="%.6f %.6f %.6f %.6f">\n' % \
(meshName, loc[0], loc[1], loc[2], sca[0], sca[1], sca[2], rot[0], rot[1], rot[2], quat.angle) )
# self.writeIndented('<Transform DEF="%s" translation="%.6f %.6f %.6f" scale="%.6f %.6f %.6f" rotation="%.6f %.6f %.6f %.6f">\n' % \
# (meshName, loc[0], loc[1], loc[2], sca[0], sca[1], sca[2], rot[0], rot[1], rot[2], quat.angle*DEG2RAD) )
self.writeIndented("<Shape>\n",1)
maters=mesh.materials
hasImageTexture=0
issmooth=0
if len(maters) > 0 or mesh.active_uv_texture:
# if len(maters) > 0 or mesh.faceUV:
self.writeIndented("<Appearance>\n", 1)
# right now this script can only handle a single material per mesh.
if len(maters) >= 1:
mat=maters[0]
# matFlags = mat.getMode()
if not mat.face_texture:
# if not matFlags & Blender.Material.Modes['TEXFACE']:
self.writeMaterial(mat, self.cleanStr(mat.name,''), world)
# self.writeMaterial(mat, self.cleanStr(maters[0].name,''), world)
if len(maters) > 1:
print("Warning: mesh named %s has multiple materials" % meshName)
print("Warning: only one material per object handled")
#-- textures
face = None
if mesh.active_uv_texture:
# if mesh.faceUV:
for face in mesh.active_uv_texture.data:
# for face in mesh.faces:
if face.image:
# if (hasImageTexture == 0) and (face.image):
self.writeImageTexture(face.image)
# hasImageTexture=1 # keep track of face texture
break
if self.tilenode == 1 and face and face.image:
# if self.tilenode == 1:
self.writeIndented("<TextureTransform scale=\"%s %s\" />\n" % (face.image.xrep, face.image.yrep))
self.tilenode = 0
self.writeIndented("</Appearance>\n", -1)
#-- IndexedFaceSet or IndexedLineSet
# user selected BOUNDS=1, SOLID=3, SHARED=4, or TEXTURE=5
ifStyle="IndexedFaceSet"
# look up mesh name, use it if available
if meshME in self.meshNames:
self.writeIndented("<%s USE=\"ME_%s\">" % (ifStyle, meshME), 1)
self.meshNames[meshME]+=1
else:
if int(mesh.users) > 1:
self.writeIndented("<%s DEF=\"ME_%s\" " % (ifStyle, meshME), 1)
self.meshNames[meshME]=1
else:
self.writeIndented("<%s " % ifStyle, 1)
if bTwoSided == 1:
self.file.write("solid=\"false\" ")
else:
self.file.write("solid=\"true\" ")
for face in mesh.faces:
if face.smooth:
issmooth=1
break
if issmooth==1:
creaseAngle=(mesh.autosmooth_angle)*(math.pi/180.0)
# creaseAngle=(mesh.degr)*(math.pi/180.0)
self.file.write("creaseAngle=\"%s\" " % (round(creaseAngle,self.cp)))
#--- output textureCoordinates if UV texture used
if mesh.active_uv_texture:
# if mesh.faceUV:
if self.matonly == 1 and self.share == 1:
self.writeFaceColors(mesh)
elif hasImageTexture == 1:
self.writeTextureCoordinates(mesh)
#--- output coordinates
self.writeCoordinates(ob, mesh, meshName, EXPORT_TRI)
self.writingcoords = 1
self.writingtexture = 1
self.writingcolor = 1
self.writeCoordinates(ob, mesh, meshName, EXPORT_TRI)
#--- output textureCoordinates if UV texture used
if mesh.active_uv_texture:
# if mesh.faceUV:
if hasImageTexture == 1:
self.writeTextureCoordinates(mesh)
elif self.matonly == 1 and self.share == 1:
self.writeFaceColors(mesh)
#--- output vertexColors
self.matonly = 0
self.share = 0
self.writingcoords = 0
self.writingtexture = 0
self.writingcolor = 0
#--- output closing braces
self.writeIndented("</%s>\n" % ifStyle, -1)
self.writeIndented("</Shape>\n", -1)
self.writeIndented("</Transform>\n", -1)
if self.halonode == 1:
self.writeIndented("</Billboard>\n", -1)
self.halonode = 0
if self.billnode == 1:
self.writeIndented("</Billboard>\n", -1)
self.billnode = 0
if self.collnode == 1:
self.writeIndented("</Collision>\n", -1)
self.collnode = 0
if nIFSCnt > 1:
self.writeIndented("</Group>\n", -1)
self.file.write("\n")
def writeCoordinates(self, ob, mesh, meshName, EXPORT_TRI = False):
# create vertex list and pre rotate -90 degrees X for VRML
if self.writingcoords == 0:
self.file.write('coordIndex="')
for face in mesh.faces:
fv = face.verts
# fv = face.v
if len(fv)==3:
# if len(face)==3:
self.file.write("%i %i %i -1, " % (fv[0], fv[1], fv[2]))
# self.file.write("%i %i %i -1, " % (fv[0].index, fv[1].index, fv[2].index))
else:
if EXPORT_TRI:
self.file.write("%i %i %i -1, " % (fv[0], fv[1], fv[2]))
# self.file.write("%i %i %i -1, " % (fv[0].index, fv[1].index, fv[2].index))
self.file.write("%i %i %i -1, " % (fv[0], fv[2], fv[3]))
# self.file.write("%i %i %i -1, " % (fv[0].index, fv[2].index, fv[3].index))
else:
self.file.write("%i %i %i %i -1, " % (fv[0], fv[1], fv[2], fv[3]))
# self.file.write("%i %i %i %i -1, " % (fv[0].index, fv[1].index, fv[2].index, fv[3].index))
self.file.write("\">\n")
else:
#-- vertices
# mesh.transform(ob.matrixWorld)
self.writeIndented("<Coordinate DEF=\"%s%s\" \n" % ("coord_",meshName), 1)
self.file.write("\t\t\t\tpoint=\"")
for v in mesh.verts:
self.file.write("%.6f %.6f %.6f, " % tuple(v.co))
self.file.write("\" />")
self.writeIndented("\n", -1)
def writeTextureCoordinates(self, mesh):
texCoordList=[]
texIndexList=[]
j=0
for face in mesh.active_uv_texture.data:
# for face in mesh.faces:
# workaround, since tface.uv iteration is wrong atm
uvs = face.uv
# uvs = [face.uv1, face.uv2, face.uv3, face.uv4] if face.verts[3] else [face.uv1, face.uv2, face.uv3]
for uv in uvs:
# for uv in face.uv:
texIndexList.append(j)
texCoordList.append(uv)
j=j+1
texIndexList.append(-1)
if self.writingtexture == 0:
self.file.write("\n\t\t\ttexCoordIndex=\"")
texIndxStr=""
for i in range(len(texIndexList)):
texIndxStr = texIndxStr + "%d, " % texIndexList[i]
if texIndexList[i]==-1:
self.file.write(texIndxStr)
texIndxStr=""
self.file.write("\"\n\t\t\t")
else:
self.writeIndented("<TextureCoordinate point=\"", 1)
for i in range(len(texCoordList)):
self.file.write("%s %s, " % (round(texCoordList[i][0],self.tp), round(texCoordList[i][1],self.tp)))
self.file.write("\" />")
self.writeIndented("\n", -1)
def writeFaceColors(self, mesh):
if self.writingcolor == 0:
self.file.write("colorPerVertex=\"false\" ")
elif mesh.active_vertex_color:
# else:
self.writeIndented("<Color color=\"", 1)
for face in mesh.active_vertex_color.data:
c = face.color1
if self.verbose > 2:
print("Debug: face.col r=%d g=%d b=%d" % (c[0], c[1], c[2]))
# print("Debug: face.col r=%d g=%d b=%d" % (c.r, c.g, c.b))
aColor = self.rgbToFS(c)
self.file.write("%s, " % aColor)
# for face in mesh.faces:
# if face.col:
# c=face.col[0]
# if self.verbose > 2:
# print("Debug: face.col r=%d g=%d b=%d" % (c.r, c.g, c.b))
# aColor = self.rgbToFS(c)
# self.file.write("%s, " % aColor)
self.file.write("\" />")
self.writeIndented("\n",-1)
def writeMaterial(self, mat, matName, world):
# look up material name, use it if available
if matName in self.matNames:
self.writeIndented("<Material USE=\"MA_%s\" />\n" % matName)
self.matNames[matName]+=1
return;
self.matNames[matName]=1
ambient = mat.ambient/3
# ambient = mat.amb/3
diffuseR, diffuseG, diffuseB = tuple(mat.diffuse_color)
# diffuseR, diffuseG, diffuseB = mat.rgbCol[0], mat.rgbCol[1],mat.rgbCol[2]
if world:
ambi = world.ambient_color
# ambi = world.getAmb()
ambi0, ambi1, ambi2 = (ambi[0]*mat.ambient)*2, (ambi[1]*mat.ambient)*2, (ambi[2]*mat.ambient)*2
# ambi0, ambi1, ambi2 = (ambi[0]*mat.amb)*2, (ambi[1]*mat.amb)*2, (ambi[2]*mat.amb)*2
else:
ambi0, ambi1, ambi2 = 0, 0, 0
emisR, emisG, emisB = (diffuseR*mat.emit+ambi0)/2, (diffuseG*mat.emit+ambi1)/2, (diffuseB*mat.emit+ambi2)/2
shininess = mat.specular_hardness/512.0
# shininess = mat.hard/512.0
specR = (mat.specular_color[0]+0.001)/(1.25/(mat.specular_intensity+0.001))
# specR = (mat.specCol[0]+0.001)/(1.25/(mat.spec+0.001))
specG = (mat.specular_color[1]+0.001)/(1.25/(mat.specular_intensity+0.001))
# specG = (mat.specCol[1]+0.001)/(1.25/(mat.spec+0.001))
specB = (mat.specular_color[2]+0.001)/(1.25/(mat.specular_intensity+0.001))
# specB = (mat.specCol[2]+0.001)/(1.25/(mat.spec+0.001))
transp = 1-mat.alpha
# matFlags = mat.getMode()
if mat.shadeless:
# if matFlags & Blender.Material.Modes['SHADELESS']:
ambient = 1
shine = 1
specR = emitR = diffuseR
specG = emitG = diffuseG
specB = emitB = diffuseB
self.writeIndented("<Material DEF=\"MA_%s\" " % matName, 1)
self.file.write("diffuseColor=\"%s %s %s\" " % (round(diffuseR,self.cp), round(diffuseG,self.cp), round(diffuseB,self.cp)))
self.file.write("specularColor=\"%s %s %s\" " % (round(specR,self.cp), round(specG,self.cp), round(specB,self.cp)))
self.file.write("emissiveColor=\"%s %s %s\" \n" % (round(emisR,self.cp), round(emisG,self.cp), round(emisB,self.cp)))
self.writeIndented("ambientIntensity=\"%s\" " % (round(ambient,self.cp)))
self.file.write("shininess=\"%s\" " % (round(shininess,self.cp)))
self.file.write("transparency=\"%s\" />" % (round(transp,self.cp)))
self.writeIndented("\n",-1)
def writeImageTexture(self, image):
name = image.name
filename = image.filename.split('/')[-1].split('\\')[-1]
if name in self.texNames:
self.writeIndented("<ImageTexture USE=\"%s\" />\n" % self.cleanStr(name))
self.texNames[name] += 1
return
else:
self.writeIndented("<ImageTexture DEF=\"%s\" " % self.cleanStr(name), 1)
self.file.write("url=\"%s\" />" % name)
self.writeIndented("\n",-1)
self.texNames[name] = 1
def writeBackground(self, world, alltextures):
if world: worldname = world.name
else: return
blending = (world.blend_sky, world.paper_sky, world.real_sky)
# blending = world.getSkytype()
grd = world.horizon_color
# grd = world.getHor()
grd0, grd1, grd2 = grd[0], grd[1], grd[2]
sky = world.zenith_color
# sky = world.getZen()
sky0, sky1, sky2 = sky[0], sky[1], sky[2]
mix0, mix1, mix2 = grd[0]+sky[0], grd[1]+sky[1], grd[2]+sky[2]
mix0, mix1, mix2 = mix0/2, mix1/2, mix2/2
self.file.write("<Background ")
if worldname not in self.namesStandard:
self.file.write("DEF=\"%s\" " % self.secureName(worldname))
# No Skytype - just Hor color
if blending == (0, 0, 0):
# if blending == 0:
self.file.write("groundColor=\"%s %s %s\" " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.file.write("skyColor=\"%s %s %s\" " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
# Blend Gradient
elif blending == (1, 0, 0):
# elif blending == 1:
self.file.write("groundColor=\"%s %s %s, " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.file.write("%s %s %s\" groundAngle=\"1.57, 1.57\" " %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
self.file.write("skyColor=\"%s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.file.write("%s %s %s\" skyAngle=\"1.57, 1.57\" " %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
# Blend+Real Gradient Inverse
elif blending == (1, 0, 1):
# elif blending == 3:
self.file.write("groundColor=\"%s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.file.write("%s %s %s\" groundAngle=\"1.57, 1.57\" " %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
self.file.write("skyColor=\"%s %s %s, " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.file.write("%s %s %s\" skyAngle=\"1.57, 1.57\" " %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
# Paper - just Zen Color
elif blending == (0, 0, 1):
# elif blending == 4:
self.file.write("groundColor=\"%s %s %s\" " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.file.write("skyColor=\"%s %s %s\" " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
# Blend+Real+Paper - komplex gradient
elif blending == (1, 1, 1):
# elif blending == 7:
self.writeIndented("groundColor=\"%s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.writeIndented("%s %s %s\" groundAngle=\"1.57, 1.57\" " %(round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.writeIndented("skyColor=\"%s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.writeIndented("%s %s %s\" skyAngle=\"1.57, 1.57\" " %(round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
# Any Other two colors
else:
self.file.write("groundColor=\"%s %s %s\" " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.file.write("skyColor=\"%s %s %s\" " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
alltexture = len(alltextures)
for i in range(alltexture):
tex = alltextures[i]
if tex.type != 'IMAGE' or tex.image == None:
continue
namemat = tex.name
# namemat = alltextures[i].name
pic = tex.image
# using .expandpath just in case, os.path may not expect //
basename = os.path.basename(bpy.utils.expandpath(pic.filename))
pic = alltextures[i].image
# pic = alltextures[i].getImage()
if (namemat == "back") and (pic != None):
self.file.write("\n\tbackUrl=\"%s\" " % basename)
# self.file.write("\n\tbackUrl=\"%s\" " % pic.filename.split('/')[-1].split('\\')[-1])
elif (namemat == "bottom") and (pic != None):
self.writeIndented("bottomUrl=\"%s\" " % basename)
# self.writeIndented("bottomUrl=\"%s\" " % pic.filename.split('/')[-1].split('\\')[-1])
elif (namemat == "front") and (pic != None):
self.writeIndented("frontUrl=\"%s\" " % basename)
# self.writeIndented("frontUrl=\"%s\" " % pic.filename.split('/')[-1].split('\\')[-1])
elif (namemat == "left") and (pic != None):
self.writeIndented("leftUrl=\"%s\" " % basename)
# self.writeIndented("leftUrl=\"%s\" " % pic.filename.split('/')[-1].split('\\')[-1])
elif (namemat == "right") and (pic != None):
self.writeIndented("rightUrl=\"%s\" " % basename)
# self.writeIndented("rightUrl=\"%s\" " % pic.filename.split('/')[-1].split('\\')[-1])
elif (namemat == "top") and (pic != None):
self.writeIndented("topUrl=\"%s\" " % basename)
# self.writeIndented("topUrl=\"%s\" " % pic.filename.split('/')[-1].split('\\')[-1])
self.writeIndented("/>\n\n")
##########################################################
# export routine
##########################################################
def export(self, scene, world, alltextures,\
EXPORT_APPLY_MODIFIERS = False,\
EXPORT_TRI= False,\
):
print("Info: starting X3D export to " + self.filename + "...")
self.writeHeader()
# self.writeScript()
self.writeNavigationInfo(scene)
self.writeBackground(world, alltextures)
self.writeFog(world)
self.proto = 0
# # COPIED FROM OBJ EXPORTER
# if EXPORT_APPLY_MODIFIERS:
# temp_mesh_name = '~tmp-mesh'
# # Get the container mesh. - used for applying modifiers and non mesh objects.
# containerMesh = meshName = tempMesh = None
# for meshName in Blender.NMesh.GetNames():
# if meshName.startswith(temp_mesh_name):
# tempMesh = Mesh.Get(meshName)
# if not tempMesh.users:
# containerMesh = tempMesh
# if not containerMesh:
# containerMesh = Mesh.New(temp_mesh_name)
# --------------------------
for ob_main in [o for o in scene.objects if o.is_visible(scene)]:
# for ob_main in scene.objects.context:
free, derived = create_derived_objects(scene, ob_main)
if derived == None: continue
for ob, ob_mat in derived:
# for ob, ob_mat in BPyObject.getDerivedObjects(ob_main):
objType=ob.type
objName=ob.name
self.matonly = 0
if objType == "CAMERA":
# if objType == "Camera":
self.writeViewpoint(ob, ob_mat, scene)
elif objType in ("MESH", "CURVE", "SURF", "TEXT") :
# elif objType in ("Mesh", "Curve", "Surf", "Text") :
if EXPORT_APPLY_MODIFIERS or objType != 'MESH':
# if EXPORT_APPLY_MODIFIERS or objType != 'Mesh':
me = ob.create_mesh(scene, EXPORT_APPLY_MODIFIERS, 'PREVIEW')
# me= BPyMesh.getMeshFromObject(ob, containerMesh, EXPORT_APPLY_MODIFIERS, False, scene)
else:
me = ob.data
# me = ob.getData(mesh=1)
self.writeIndexedFaceSet(ob, me, ob_mat, world, EXPORT_TRI = EXPORT_TRI)
# free mesh created with create_mesh()
if me != ob.data:
bpy.data.meshes.remove(me)
elif objType == "LAMP":
# elif objType == "Lamp":
data= ob.data
datatype=data.type
if datatype == 'POINT':
# if datatype == Lamp.Types.Lamp:
self.writePointLight(ob, ob_mat, data, world)
elif datatype == 'SPOT':
# elif datatype == Lamp.Types.Spot:
self.writeSpotLight(ob, ob_mat, data, world)
elif datatype == 'SUN':
# elif datatype == Lamp.Types.Sun:
self.writeDirectionalLight(ob, ob_mat, data, world)
else:
self.writeDirectionalLight(ob, ob_mat, data, world)
# do you think x3d could document what to do with dummy objects?
#elif objType == "Empty" and objName != "Empty":
# self.writeNode(ob, ob_mat)
else:
#print "Info: Ignoring [%s], object type [%s] not handle yet" % (object.name,object.getType)
pass
if free:
free_derived_objects(ob_main)
self.file.write("\n</Scene>\n</X3D>")
# if EXPORT_APPLY_MODIFIERS:
# if containerMesh:
# containerMesh.verts = None
self.cleanup()
##########################################################
# Utility methods
##########################################################
def cleanup(self):
self.file.close()
self.texNames={}
self.matNames={}
self.indentLevel=0
print("Info: finished X3D export to %s\n" % self.filename)
def cleanStr(self, name, prefix='rsvd_'):
"""cleanStr(name,prefix) - try to create a valid VRML DEF name from object name"""
newName=name[:]
if len(newName) == 0:
self.nNodeID+=1
return "%s%d" % (prefix, self.nNodeID)
if newName in self.namesReserved:
newName='%s%s' % (prefix,newName)
if newName[0].isdigit():
newName='%s%s' % ('_',newName)
for bad in [' ','"','#',"'",',','.','[','\\',']','{','}']:
newName=newName.replace(bad,'_')
return newName
def countIFSSetsNeeded(self, mesh, imageMap, sided, vColors):
"""
countIFFSetsNeeded() - should look at a blender mesh to determine
how many VRML IndexFaceSets or IndexLineSets are needed. A
new mesh created under the following conditions:
o - split by UV Textures / one per mesh
o - split by face, one sided and two sided
o - split by smooth and flat faces
o - split when faces only have 2 vertices * needs to be an IndexLineSet
"""
imageNameMap={}
faceMap={}
nFaceIndx=0
if mesh.active_uv_texture:
# if mesh.faceUV:
for face in mesh.active_uv_texture.data:
# for face in mesh.faces:
sidename='';
if face.twoside:
# if face.mode & Mesh.FaceModes.TWOSIDE:
sidename='two'
else:
sidename='one'
if sidename in sided:
sided[sidename]+=1
else:
sided[sidename]=1
image = face.image
if image:
faceName="%s_%s" % (face.image.name, sidename);
try:
imageMap[faceName].append(face)
except:
imageMap[faceName]=[face.image.name,sidename,face]
if self.verbose > 2:
for faceName in imageMap.keys():
ifs=imageMap[faceName]
print("Debug: faceName=%s image=%s, solid=%s facecnt=%d" % \
(faceName, ifs[0], ifs[1], len(ifs)-2))
return len(imageMap)
def faceToString(self,face):
print("Debug: face.flag=0x%x (bitflags)" % face.flag)
if face.sel:
print("Debug: face.sel=true")
print("Debug: face.mode=0x%x (bitflags)" % face.mode)
if face.mode & Mesh.FaceModes.TWOSIDE:
print("Debug: face.mode twosided")
print("Debug: face.transp=0x%x (enum)" % face.transp)
if face.transp == Mesh.FaceTranspModes.SOLID:
print("Debug: face.transp.SOLID")
if face.image:
print("Debug: face.image=%s" % face.image.name)
print("Debug: face.materialIndex=%d" % face.materialIndex)
# XXX not used
# def getVertexColorByIndx(self, mesh, indx):
# c = None
# for face in mesh.faces:
# j=0
# for vertex in face.v:
# if vertex.index == indx:
# c=face.col[j]
# break
# j=j+1
# if c: break
# return c
def meshToString(self,mesh):
# print("Debug: mesh.hasVertexUV=%d" % mesh.vertexColors)
print("Debug: mesh.faceUV=%d" % (len(mesh.uv_textures) > 0))
# print("Debug: mesh.faceUV=%d" % mesh.faceUV)
print("Debug: mesh.hasVertexColours=%d" % (len(mesh.vertex_colors) > 0))
# print("Debug: mesh.hasVertexColours=%d" % mesh.hasVertexColours())
print("Debug: mesh.verts=%d" % len(mesh.verts))
print("Debug: mesh.faces=%d" % len(mesh.faces))
print("Debug: mesh.materials=%d" % len(mesh.materials))
def rgbToFS(self, c):
s="%s %s %s" % (round(c[0]/255.0,self.cp),
round(c[1]/255.0,self.cp),
round(c[2]/255.0,self.cp))
# s="%s %s %s" % (
# round(c.r/255.0,self.cp),
# round(c.g/255.0,self.cp),
# round(c.b/255.0,self.cp))
return s
def computeDirection(self, mtx):
x,y,z=(0,-1.0,0) # point down
ax,ay,az = (mtx*MATWORLD).to_euler()
# ax *= DEG2RAD
# ay *= DEG2RAD
# az *= DEG2RAD
# rot X
x1=x
y1=y*math.cos(ax)-z*math.sin(ax)
z1=y*math.sin(ax)+z*math.cos(ax)
# rot Y
x2=x1*math.cos(ay)+z1*math.sin(ay)
y2=y1
z2=z1*math.cos(ay)-x1*math.sin(ay)
# rot Z
x3=x2*math.cos(az)-y2*math.sin(az)
y3=x2*math.sin(az)+y2*math.cos(az)
z3=z2
return [x3,y3,z3]
# swap Y and Z to handle axis difference between Blender and VRML
#------------------------------------------------------------------------
def rotatePointForVRML(self, v):
x = v[0]
y = v[2]
z = -v[1]
vrmlPoint=[x, y, z]
return vrmlPoint
# For writing well formed VRML code
#------------------------------------------------------------------------
def writeIndented(self, s, inc=0):
if inc < 1:
self.indentLevel = self.indentLevel + inc
spaces=""
for x in range(self.indentLevel):
spaces = spaces + "\t"
self.file.write(spaces + s)
if inc > 0:
self.indentLevel = self.indentLevel + inc
# Converts a Euler to three new Quaternions
# Angles of Euler are passed in as radians
#------------------------------------------------------------------------
def eulerToQuaternions(self, x, y, z):
Qx = [math.cos(x/2), math.sin(x/2), 0, 0]
Qy = [math.cos(y/2), 0, math.sin(y/2), 0]
Qz = [math.cos(z/2), 0, 0, math.sin(z/2)]
quaternionVec=[Qx,Qy,Qz]
return quaternionVec
# Multiply two Quaternions together to get a new Quaternion
#------------------------------------------------------------------------
def multiplyQuaternions(self, Q1, Q2):
result = [((Q1[0] * Q2[0]) - (Q1[1] * Q2[1]) - (Q1[2] * Q2[2]) - (Q1[3] * Q2[3])),
((Q1[0] * Q2[1]) + (Q1[1] * Q2[0]) + (Q1[2] * Q2[3]) - (Q1[3] * Q2[2])),
((Q1[0] * Q2[2]) + (Q1[2] * Q2[0]) + (Q1[3] * Q2[1]) - (Q1[1] * Q2[3])),
((Q1[0] * Q2[3]) + (Q1[3] * Q2[0]) + (Q1[1] * Q2[2]) - (Q1[2] * Q2[1]))]
return result
# Convert a Quaternion to an Angle Axis (ax, ay, az, angle)
# angle is in radians
#------------------------------------------------------------------------
def quaternionToAngleAxis(self, Qf):
scale = math.pow(Qf[1],2) + math.pow(Qf[2],2) + math.pow(Qf[3],2)
ax = Qf[1]
ay = Qf[2]
az = Qf[3]
if scale > .0001:
ax/=scale
ay/=scale
az/=scale
angle = 2 * math.acos(Qf[0])
result = [ax, ay, az, angle]
return result
##########################################################
# Callbacks, needed before Main
##########################################################
def x3d_export(filename,
context,
EXPORT_APPLY_MODIFIERS=False,
EXPORT_TRI=False,
EXPORT_GZIP=False):
if EXPORT_GZIP:
if not filename.lower().endswith('.x3dz'):
filename = '.'.join(filename.split('.')[:-1]) + '.x3dz'
else:
if not filename.lower().endswith('.x3d'):
filename = '.'.join(filename.split('.')[:-1]) + '.x3d'
scene = context.scene
world = scene.world
bpy.ops.object.mode_set(mode='OBJECT')
# XXX these are global textures while .Get() returned only scene's?
alltextures = bpy.data.textures
# alltextures = Blender.Texture.Get()
wrlexport=x3d_class(filename)
wrlexport.export(\
scene,\
world,\
alltextures,\
\
EXPORT_APPLY_MODIFIERS = EXPORT_APPLY_MODIFIERS,\
EXPORT_TRI = EXPORT_TRI,\
)
def x3d_export_ui(filename):
if not filename.endswith(extension):
filename += extension
#if _safeOverwrite and sys.exists(filename):
# result = Draw.PupMenu("File Already Exists, Overwrite?%t|Yes%x1|No%x0")
#if(result != 1):
# return
# Get user options
EXPORT_APPLY_MODIFIERS = Draw.Create(1)
EXPORT_TRI = Draw.Create(0)
EXPORT_GZIP = Draw.Create( filename.lower().endswith('.x3dz') )
# Get USER Options
pup_block = [\
('Apply Modifiers', EXPORT_APPLY_MODIFIERS, 'Use transformed mesh data from each object.'),\
('Triangulate', EXPORT_TRI, 'Triangulate quads.'),\
('Compress', EXPORT_GZIP, 'GZip the resulting file, requires a full python install'),\
]
if not Draw.PupBlock('Export...', pup_block):
return
Blender.Window.EditMode(0)
Blender.Window.WaitCursor(1)
x3d_export(filename,\
EXPORT_APPLY_MODIFIERS = EXPORT_APPLY_MODIFIERS.val,\
EXPORT_TRI = EXPORT_TRI.val,\
EXPORT_GZIP = EXPORT_GZIP.val\
)
Blender.Window.WaitCursor(0)
#########################################################
# main routine
#########################################################
# if __name__ == '__main__':
# Blender.Window.FileSelector(x3d_export_ui,"Export X3D", Blender.Get('filename').replace('.blend', '.x3d'))
from bpy.props import *
class ExportX3D(bpy.types.Operator):
'''Export selection to Extensible 3D file (.x3d)'''
bl_idname = "export.x3d"
bl_label = 'Export X3D'
# List of operator properties, the attributes will be assigned
# to the class instance from the operator settings before calling.
path = StringProperty(name="File Path", description="File path used for exporting the X3D file", maxlen= 1024, default= "")
check_existing = BoolProperty(name="Check Existing", description="Check and warn on overwriting existing files", default=True, options={'HIDDEN'})
apply_modifiers = BoolProperty(name="Apply Modifiers", description="Use transformed mesh data from each object", default=True)
triangulate = BoolProperty(name="Triangulate", description="Triangulate quads.", default=False)
compress = BoolProperty(name="Compress", description="GZip the resulting file, requires a full python install", default=False)
def execute(self, context):
x3d_export(self.properties.path, context, self.properties.apply_modifiers, self.properties.triangulate, self.properties.compress)
return {'FINISHED'}
def invoke(self, context, event):
wm = context.manager
wm.add_fileselect(self)
return {'RUNNING_MODAL'}
def menu_func(self, context):
default_path = bpy.data.filename.replace(".blend", ".x3d")
self.layout.operator(ExportX3D.bl_idname, text="X3D Extensible 3D (.x3d)").path = default_path
def register():
bpy.types.register(ExportX3D)
bpy.types.INFO_MT_file_export.append(menu_func)
def unregister():
bpy.types.unregister(ExportX3D)
bpy.types.INFO_MT_file_export.remove(menu_func)
# NOTES
# - blender version is hardcoded
if __name__ == "__main__":
register()