blender/intern/cycles/render/camera.cpp
Stuart Broadfoot 638b084f82 Cycles Hair: Strand Minimum Pixel Size
Code is added to restrict the pixel size of strands in cycles. It works best with ribbon primitives and a preset for these is included. It uses distance dependent expansion of the strands and then stochastic strand removal to give a fading. To prevent a slowdown for triangle mesh objects in the BVH an extra visibility flag has been added. It is also only applied for camera rays.

The strand width settings are also changed, so that the particle size is not included in the width calculation. Instead there is a separate particle system parameter for width scaling.
2013-04-15 21:38:31 +00:00

295 lines
7.8 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "camera.h"
#include "scene.h"
#include "device.h"
#include "util_vector.h"
CCL_NAMESPACE_BEGIN
Camera::Camera()
{
shuttertime = 1.0f;
aperturesize = 0.0f;
focaldistance = 10.0f;
blades = 0;
bladesrotation = 0.0f;
matrix = transform_identity();
motion.pre = transform_identity();
motion.post = transform_identity();
use_motion = false;
type = CAMERA_PERSPECTIVE;
panorama_type = PANORAMA_EQUIRECTANGULAR;
fisheye_fov = M_PI_F;
fisheye_lens = 10.5f;
fov = M_PI_F/4.0f;
sensorwidth = 0.036;
sensorheight = 0.024;
nearclip = 1e-5f;
farclip = 1e5f;
width = 1024;
height = 512;
viewplane.left = -((float)width/(float)height);
viewplane.right = (float)width/(float)height;
viewplane.bottom = -1.0f;
viewplane.top = 1.0f;
screentoworld = transform_identity();
rastertoworld = transform_identity();
ndctoworld = transform_identity();
rastertocamera = transform_identity();
cameratoworld = transform_identity();
worldtoraster = transform_identity();
dx = make_float3(0.0f, 0.0f, 0.0f);
dy = make_float3(0.0f, 0.0f, 0.0f);
need_update = true;
need_device_update = true;
previous_need_motion = -1;
}
Camera::~Camera()
{
}
void Camera::update()
{
if(!need_update)
return;
/* ndc to raster */
Transform screentocamera;
Transform ndctoraster = transform_scale(width, height, 1.0f);
/* raster to screen */
Transform screentondc =
transform_scale(1.0f/(viewplane.right - viewplane.left),
1.0f/(viewplane.top - viewplane.bottom), 1.0f) *
transform_translate(-viewplane.left, -viewplane.bottom, 0.0f);
Transform screentoraster = ndctoraster * screentondc;
Transform rastertoscreen = transform_inverse(screentoraster);
/* screen to camera */
if(type == CAMERA_PERSPECTIVE)
screentocamera = transform_inverse(transform_perspective(fov, nearclip, farclip));
else if(type == CAMERA_ORTHOGRAPHIC)
screentocamera = transform_inverse(transform_orthographic(nearclip, farclip));
else
screentocamera = transform_identity();
Transform cameratoscreen = transform_inverse(screentocamera);
rastertocamera = screentocamera * rastertoscreen;
cameratoraster = screentoraster * cameratoscreen;
cameratoworld = matrix;
screentoworld = cameratoworld * screentocamera;
rastertoworld = cameratoworld * rastertocamera;
ndctoworld = rastertoworld * ndctoraster;
/* note we recompose matrices instead of taking inverses of the above, this
* is needed to avoid inverting near degenerate matrices that happen due to
* precision issues with large scenes */
worldtocamera = transform_inverse(matrix);
worldtoscreen = cameratoscreen * worldtocamera;
worldtondc = screentondc * worldtoscreen;
worldtoraster = ndctoraster * worldtondc;
/* differentials */
if(type == CAMERA_ORTHOGRAPHIC) {
dx = transform_direction(&rastertocamera, make_float3(1, 0, 0));
dy = transform_direction(&rastertocamera, make_float3(0, 1, 0));
}
else if(type == CAMERA_PERSPECTIVE) {
dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
}
else {
dx = make_float3(0, 0, 0);
dy = make_float3(0, 0, 0);
}
dx = transform_direction(&cameratoworld, dx);
dy = transform_direction(&cameratoworld, dy);
need_update = false;
need_device_update = true;
}
void Camera::device_update(Device *device, DeviceScene *dscene, Scene *scene)
{
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
update();
if (previous_need_motion != need_motion) {
/* scene's motion model could have been changed since previous device
* camera update this could happen for example in case when one render
* layer has got motion pass and another not */
need_device_update = true;
}
if(!need_device_update)
return;
KernelCamera *kcam = &dscene->data.cam;
/* store matrices */
kcam->screentoworld = screentoworld;
kcam->rastertoworld = rastertoworld;
kcam->rastertocamera = rastertocamera;
kcam->cameratoworld = cameratoworld;
kcam->worldtocamera = worldtocamera;
kcam->worldtoscreen = worldtoscreen;
kcam->worldtoraster = worldtoraster;
kcam->worldtondc = worldtondc;
/* camera motion */
kcam->have_motion = 0;
if(need_motion == Scene::MOTION_PASS) {
if(type == CAMERA_PANORAMA) {
if(use_motion) {
kcam->motion.pre = transform_inverse(motion.pre);
kcam->motion.post = transform_inverse(motion.post);
}
else {
kcam->motion.pre = kcam->worldtocamera;
kcam->motion.post = kcam->worldtocamera;
}
}
else {
if(use_motion) {
kcam->motion.pre = cameratoraster * transform_inverse(motion.pre);
kcam->motion.post = cameratoraster * transform_inverse(motion.post);
}
else {
kcam->motion.pre = worldtoraster;
kcam->motion.post = worldtoraster;
}
}
}
#ifdef __CAMERA_MOTION__
else if(need_motion == Scene::MOTION_BLUR) {
if(use_motion) {
transform_motion_decompose((DecompMotionTransform*)&kcam->motion, &motion, &matrix);
kcam->have_motion = 1;
}
}
#endif
/* depth of field */
kcam->aperturesize = aperturesize;
kcam->focaldistance = focaldistance;
kcam->blades = (blades < 3)? 0.0f: blades;
kcam->bladesrotation = bladesrotation;
/* motion blur */
#ifdef __CAMERA_MOTION__
kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime: -1.0f;
#else
kcam->shuttertime = -1.0f;
#endif
/* type */
kcam->type = type;
/* panorama */
kcam->panorama_type = panorama_type;
kcam->fisheye_fov = fisheye_fov;
kcam->fisheye_lens = fisheye_lens;
/* sensor size */
kcam->sensorwidth = sensorwidth;
kcam->sensorheight = sensorheight;
/* render size */
kcam->width = width;
kcam->height = height;
kcam->resolution = resolution;
/* store differentials */
kcam->dx = float3_to_float4(dx);
kcam->dy = float3_to_float4(dy);
/* clipping */
kcam->nearclip = nearclip;
kcam->cliplength = (farclip == FLT_MAX)? FLT_MAX: farclip - nearclip;
need_device_update = false;
previous_need_motion = need_motion;
}
void Camera::device_free(Device *device, DeviceScene *dscene)
{
/* nothing to free, only writing to constant memory */
}
bool Camera::modified(const Camera& cam)
{
return !((shuttertime == cam.shuttertime) &&
(aperturesize == cam.aperturesize) &&
(blades == cam.blades) &&
(bladesrotation == cam.bladesrotation) &&
(focaldistance == cam.focaldistance) &&
(type == cam.type) &&
(fov == cam.fov) &&
(nearclip == cam.nearclip) &&
(farclip == cam.farclip) &&
(sensorwidth == cam.sensorwidth) &&
(sensorheight == cam.sensorheight) &&
// modified for progressive render
// (width == cam.width) &&
// (height == cam.height) &&
(viewplane == cam.viewplane) &&
(border == cam.border) &&
(matrix == cam.matrix) &&
(panorama_type == cam.panorama_type) &&
(fisheye_fov == cam.fisheye_fov) &&
(fisheye_lens == cam.fisheye_lens));
}
bool Camera::motion_modified(const Camera& cam)
{
return !((motion == cam.motion) &&
(use_motion == cam.use_motion));
}
void Camera::tag_update()
{
need_update = true;
}
CCL_NAMESPACE_END