forked from bartvdbraak/blender
04fc326371
fixed problem with merging islands not detecting an island in an island (wrong offset) better island merging from user input
1132 lines
32 KiB
Python
1132 lines
32 KiB
Python
#!BPY
|
|
|
|
""" Registration info for Blender menus: <- these words are ignored
|
|
Name: 'Unwrap (smart projections)'
|
|
Blender: 240
|
|
Group: 'UVCalculation'
|
|
Tooltip: 'ArchiMap UV Unwrap mesh faces for all select mesh objects'
|
|
"""
|
|
|
|
|
|
__author__ = "Campbell Barton"
|
|
__url__ = ("blender", "elysiun")
|
|
__version__ = "1.1 12/18/05"
|
|
|
|
__bpydoc__ = """\
|
|
This script projection unwraps the selected faces of a mesh.
|
|
|
|
it operates on all selected mesh objects, and can be used unwrap
|
|
selected faces, or all faces.
|
|
"""
|
|
|
|
# --------------------------------------------------------------------------
|
|
# Archimap UV Projection Unwrapper v1.1 by Campbell Barton (AKA Ideasman)
|
|
# --------------------------------------------------------------------------
|
|
# ***** BEGIN GPL LICENSE BLOCK *****
|
|
#
|
|
# This program is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU General Public License
|
|
# as published by the Free Software Foundation; either version 2
|
|
# of the License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software Foundation,
|
|
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
#
|
|
# ***** END GPL LICENCE BLOCK *****
|
|
# --------------------------------------------------------------------------
|
|
|
|
|
|
from Blender import Object, Scene, Draw, Window, sys, Mesh, Geometry
|
|
from Blender.Mathutils import CrossVecs, Matrix, Vector, RotationMatrix, DotVecs
|
|
|
|
from math import cos
|
|
|
|
DEG_TO_RAD = 0.017453292519943295 # pi/180.0
|
|
SMALL_NUM = 0.000000001
|
|
BIG_NUM = 1e15
|
|
|
|
global USER_FILL_HOLES
|
|
global USER_FILL_HOLES_QUALITY
|
|
USER_FILL_HOLES = None
|
|
USER_FILL_HOLES_QUALITY = None
|
|
|
|
import boxpack2d
|
|
# reload(boxpack2d) # for developing.
|
|
|
|
dict_matrix = {}
|
|
|
|
def pointInTri2D(v, v1, v2, v3):
|
|
global dict_matrix
|
|
|
|
key = v1.x, v1.y, v2.x, v2.y, v3.x, v3.y
|
|
|
|
# Commented because its slower to do teh bounds check, we should realy cache the bounds info for each face.
|
|
'''
|
|
# BOUNDS CHECK
|
|
xmin= 1000000
|
|
ymin= 1000000
|
|
|
|
xmax= -1000000
|
|
ymax= -1000000
|
|
|
|
for i in (0,2,4):
|
|
x= key[i]
|
|
y= key[i+1]
|
|
|
|
if xmax<x: xmax= x
|
|
if ymax<y: ymax= y
|
|
if xmin>x: xmin= x
|
|
if ymin>y: ymin= y
|
|
|
|
x= v.x
|
|
y= v.y
|
|
|
|
if x<xmin or x>xmax or y < ymin or y > ymax:
|
|
return False
|
|
# Done with bounds check
|
|
'''
|
|
try:
|
|
mtx = dict_matrix[key]
|
|
if not mtx:
|
|
return False
|
|
except:
|
|
side1 = v2 - v1
|
|
side2 = v3 - v1
|
|
|
|
nor = CrossVecs(side1, side2)
|
|
|
|
l1 = [side1[0], side1[1], side1[2]]
|
|
l2 = [side2[0], side2[1], side2[2]]
|
|
l3 = [nor[0], nor[1], nor[2]]
|
|
|
|
mtx = Matrix(l1, l2, l3)
|
|
|
|
# Zero area 2d tri, even tho we throw away zerop area faces
|
|
# the projection UV can result in a zero area UV.
|
|
if not mtx.determinant():
|
|
dict_matrix[key] = None
|
|
return False
|
|
|
|
mtx.invert()
|
|
|
|
dict_matrix[key] = mtx
|
|
|
|
uvw = (v - v1) * mtx
|
|
return 0 <= uvw[0] and 0 <= uvw[1] and uvw[0] + uvw[1] <= 1
|
|
|
|
|
|
def boundsIsland(faces):
|
|
minx = maxx = faces[0].uv[0][0] # Set initial bounds.
|
|
miny = maxy = faces[0].uv[0][1]
|
|
# print len(faces), minx, maxx, miny , maxy
|
|
for f in faces:
|
|
for uv in f.uv:
|
|
x= uv.x
|
|
y= uv.y
|
|
if x<minx: minx= x
|
|
if y<miny: miny= y
|
|
if x>maxx: maxx= x
|
|
if y>maxy: maxy= y
|
|
|
|
return minx, miny, maxx, maxy
|
|
|
|
"""
|
|
def boundsEdgeLoop(edges):
|
|
minx = maxx = edges[0][0] # Set initial bounds.
|
|
miny = maxy = edges[0][1]
|
|
# print len(faces), minx, maxx, miny , maxy
|
|
for ed in edges:
|
|
for pt in ed:
|
|
print 'ass'
|
|
x= pt[0]
|
|
y= pt[1]
|
|
if x<minx: x= minx
|
|
if y<miny: y= miny
|
|
if x>maxx: x= maxx
|
|
if y>maxy: y= maxy
|
|
|
|
return minx, miny, maxx, maxy
|
|
"""
|
|
|
|
# Turns the islands into a list of unpordered edges (Non internal)
|
|
# Onlt for UV's
|
|
# only returns outline edges for intersection tests. and unique points.
|
|
|
|
def island2Edge(island):
|
|
|
|
# Vert index edges
|
|
edges = {}
|
|
|
|
unique_points= {}
|
|
|
|
for f in island:
|
|
f_uvkey= map(tuple, f.uv)
|
|
|
|
|
|
for vIdx, edkey in enumerate(f.edge_keys):
|
|
unique_points[f_uvkey[vIdx]] = f.uv[vIdx]
|
|
|
|
if f.v[vIdx].index > f.v[vIdx-1].index:
|
|
i1= vIdx-1; i2= vIdx
|
|
else:
|
|
i1= vIdx; i2= vIdx-1
|
|
|
|
try: edges[ f_uvkey[i1], f_uvkey[i2] ] *= 0 # sets eny edge with more then 1 user to 0 are not returned.
|
|
except: edges[ f_uvkey[i1], f_uvkey[i2] ] = (f.uv[i1] - f.uv[i2]).length,
|
|
|
|
# If 2 are the same then they will be together, but full [a,b] order is not correct.
|
|
|
|
# Sort by length
|
|
|
|
|
|
length_sorted_edges = [(Vector(key[0]), Vector(key[1]), value) for key, value in edges.iteritems() if value != 0]
|
|
|
|
try: length_sorted_edges.sort(key = lambda A: -A[2]) # largest first
|
|
except: length_sorted_edges.sort(lambda A, B: cmp(B[2], A[2]))
|
|
|
|
# Its okay to leave the length in there.
|
|
#for e in length_sorted_edges:
|
|
# e.pop(2)
|
|
|
|
# return edges and unique points
|
|
return length_sorted_edges, [v.__copy__().resize3D() for v in unique_points.itervalues()]
|
|
|
|
# ========================= NOT WORKING????
|
|
# Find if a points inside an edge loop, un-orderd.
|
|
# pt is and x/y
|
|
# edges are a non ordered loop of edges.
|
|
# #offsets are the edge x and y offset.
|
|
"""
|
|
def pointInEdges(pt, edges):
|
|
#
|
|
x1 = pt[0]
|
|
y1 = pt[1]
|
|
|
|
# Point to the left of this line.
|
|
x2 = -100000
|
|
y2 = -10000
|
|
intersectCount = 0
|
|
for ed in edges:
|
|
xi, yi = lineIntersection2D(x1,y1, x2,y2, ed[0][0], ed[0][1], ed[1][0], ed[1][1])
|
|
if xi != None: # Is there an intersection.
|
|
intersectCount+=1
|
|
|
|
return intersectCount % 2
|
|
"""
|
|
|
|
def pointInIsland(pt, island):
|
|
vec1 = Vector(); vec2 = Vector(); vec3 = Vector()
|
|
for f in island:
|
|
vec1.x, vec1.y = f.uv[0]
|
|
vec2.x, vec2.y = f.uv[1]
|
|
vec3.x, vec3.y = f.uv[2]
|
|
|
|
if pointInTri2D(pt, vec1, vec2, vec3):
|
|
return True
|
|
|
|
if len(f.v) == 4:
|
|
vec1.x, vec1.y = f.uv[0]
|
|
vec2.x, vec2.y = f.uv[2]
|
|
vec3.x, vec3.y = f.uv[3]
|
|
if pointInTri2D(pt, vec1, vec2, vec3):
|
|
return True
|
|
return False
|
|
|
|
|
|
# box is (left,bottom, right, top)
|
|
def islandIntersectUvIsland(source, target, SourceOffset):
|
|
# Is 1 point in the box, inside the vertLoops
|
|
edgeLoopsSource = source[6] # Pretend this is offset
|
|
edgeLoopsTarget = target[6]
|
|
|
|
# Edge intersect test
|
|
for ed in edgeLoopsSource:
|
|
for seg in edgeLoopsTarget:
|
|
i = Geometry.LineIntersect2D(\
|
|
seg[0], seg[1], SourceOffset+ed[0], SourceOffset+ed[1])
|
|
if i:
|
|
return 1 # LINE INTERSECTION
|
|
|
|
# 1 test for source being totally inside target
|
|
SourceOffset.resize3D()
|
|
for pv in source[7]:
|
|
if pointInIsland(pv+SourceOffset, target[0]):
|
|
return 2 # SOURCE INSIDE TARGET
|
|
|
|
# 2 test for a part of the target being totaly inside the source.
|
|
for pv in target[7]:
|
|
if pointInIsland(pv-SourceOffset, source[0]):
|
|
return 3 # PART OF TARGET INSIDE SOURCE.
|
|
|
|
return 0 # NO INTERSECTION
|
|
|
|
|
|
|
|
|
|
# Returns the X/y Bounds of a list of vectors.
|
|
def testNewVecLs2DRotIsBetter(vecs, mat=-1, bestAreaSoFar = -1):
|
|
|
|
# UV's will never extend this far.
|
|
minx = miny = BIG_NUM
|
|
maxx = maxy = -BIG_NUM
|
|
|
|
for i, v in enumerate(vecs):
|
|
|
|
# Do this allong the way
|
|
if mat != -1:
|
|
v = vecs[i] = v*mat
|
|
x= v.x
|
|
y= v.y
|
|
if x<minx: minx= x
|
|
if y<miny: miny= y
|
|
if x>maxx: maxx= x
|
|
if y>maxy: maxy= y
|
|
|
|
# Spesific to this algo, bail out if we get bigger then the current area
|
|
if bestAreaSoFar != -1 and (maxx-minx) * (maxy-miny) > bestAreaSoFar:
|
|
return (BIG_NUM, None), None
|
|
w = maxx-minx
|
|
h = maxy-miny
|
|
return (w*h, w,h), vecs # Area, vecs
|
|
|
|
# Takes a list of faces that make up a UV island and rotate
|
|
# until they optimally fit inside a square.
|
|
ROTMAT_2D_POS_90D = RotationMatrix( 90, 2)
|
|
ROTMAT_2D_POS_45D = RotationMatrix( 45, 2)
|
|
|
|
RotMatStepRotation = []
|
|
rot_angle = 22.5 #45.0/2
|
|
while rot_angle > 0.1:
|
|
RotMatStepRotation.append([\
|
|
RotationMatrix( rot_angle, 2),\
|
|
RotationMatrix( -rot_angle, 2)])
|
|
|
|
rot_angle = rot_angle/2.0
|
|
|
|
|
|
def optiRotateUvIsland(faces):
|
|
global currentArea
|
|
|
|
# Bestfit Rotation
|
|
def best2dRotation(uvVecs, MAT1, MAT2):
|
|
global currentArea
|
|
|
|
newAreaPos, newfaceProjectionGroupListPos =\
|
|
testNewVecLs2DRotIsBetter(uvVecs[:], MAT1, currentArea[0])
|
|
|
|
|
|
# Why do I use newpos here? May as well give the best area to date for an early bailout
|
|
# some slight speed increase in this.
|
|
# If the new rotation is smaller then the existing, we can
|
|
# avoid copying a list and overwrite the old, crappy one.
|
|
|
|
if newAreaPos[0] < currentArea[0]:
|
|
newAreaNeg, newfaceProjectionGroupListNeg =\
|
|
testNewVecLs2DRotIsBetter(uvVecs, MAT2, newAreaPos[0]) # Reuse the old bigger list.
|
|
else:
|
|
newAreaNeg, newfaceProjectionGroupListNeg =\
|
|
testNewVecLs2DRotIsBetter(uvVecs[:], MAT2, currentArea[0]) # Cant reuse, make a copy.
|
|
|
|
|
|
# Now from the 3 options we need to discover which to use
|
|
# we have cerrentArea/newAreaPos/newAreaNeg
|
|
bestArea = min(currentArea[0], newAreaPos[0], newAreaNeg[0])
|
|
|
|
if currentArea[0] == bestArea:
|
|
return uvVecs
|
|
elif newAreaPos[0] == bestArea:
|
|
uvVecs = newfaceProjectionGroupListPos
|
|
currentArea = newAreaPos
|
|
elif newAreaNeg[0] == bestArea:
|
|
uvVecs = newfaceProjectionGroupListNeg
|
|
currentArea = newAreaNeg
|
|
|
|
return uvVecs
|
|
|
|
|
|
# Serialized UV coords to Vectors
|
|
uvVecs = [uv for f in faces for uv in f.uv]
|
|
|
|
# Theres a small enough number of these to hard code it
|
|
# rather then a loop.
|
|
|
|
# Will not modify anything
|
|
currentArea, dummy =\
|
|
testNewVecLs2DRotIsBetter(uvVecs)
|
|
|
|
|
|
# Try a 45d rotation
|
|
newAreaPos, newfaceProjectionGroupListPos = testNewVecLs2DRotIsBetter(uvVecs[:], ROTMAT_2D_POS_45D, currentArea[0])
|
|
|
|
if newAreaPos[0] < currentArea[0]:
|
|
uvVecs = newfaceProjectionGroupListPos
|
|
currentArea = newAreaPos
|
|
# 45d done
|
|
|
|
# Testcase different rotations and find the onfe that best fits in a square
|
|
for ROTMAT in RotMatStepRotation:
|
|
uvVecs = best2dRotation(uvVecs, ROTMAT[0], ROTMAT[1])
|
|
|
|
# Only if you want it, make faces verticle!
|
|
if currentArea[1] > currentArea[2]:
|
|
# Rotate 90d
|
|
# Work directly on the list, no need to return a value.
|
|
testNewVecLs2DRotIsBetter(uvVecs, ROTMAT_2D_POS_90D)
|
|
|
|
|
|
# Now write the vectors back to the face UV's
|
|
i = 0 # count the serialized uv/vectors
|
|
for f in faces:
|
|
#f.uv = [uv for uv in uvVecs[i:len(f)+i] ]
|
|
for j, k in enumerate(xrange(i, len(f.v)+i)):
|
|
f.uv[j][:] = uvVecs[k]
|
|
i += len(f.v)
|
|
|
|
|
|
# Takes an island list and tries to find concave, hollow areas to pack smaller islands into.
|
|
def mergeUvIslands(islandList):
|
|
global USER_FILL_HOLES
|
|
global USER_FILL_HOLES_QUALITY
|
|
|
|
# Pack islands to bottom LHS
|
|
# Sync with island
|
|
|
|
#islandTotFaceArea = [] # A list of floats, each island area
|
|
#islandArea = [] # a list of tuples ( area, w,h)
|
|
|
|
|
|
decoratedIslandList = []
|
|
|
|
islandIdx = len(islandList)
|
|
while islandIdx:
|
|
islandIdx-=1
|
|
minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
|
|
w, h = maxx-minx, maxy-miny
|
|
|
|
totFaceArea = 0
|
|
offset= Vector(minx, miny)
|
|
for f in islandList[islandIdx]:
|
|
for uv in f.uv:
|
|
uv -= offset
|
|
|
|
totFaceArea += f.area
|
|
|
|
islandBoundsArea = w*h
|
|
efficiency = abs(islandBoundsArea - totFaceArea)
|
|
|
|
# UV Edge list used for intersections as well as unique points.
|
|
edges, uniqueEdgePoints = island2Edge(islandList[islandIdx])
|
|
|
|
decoratedIslandList.append([islandList[islandIdx], totFaceArea, efficiency, islandBoundsArea, w,h, edges, uniqueEdgePoints])
|
|
|
|
|
|
# Sort by island bounding box area, smallest face area first.
|
|
# no.. chance that to most simple edge loop first.
|
|
decoratedIslandListAreaSort =decoratedIslandList[:]
|
|
|
|
try: decoratedIslandListAreaSort.sort(key = lambda A: A[3])
|
|
except: decoratedIslandListAreaSort.sort(lambda A, B: cmp(A[3], B[3]))
|
|
|
|
|
|
# sort by efficiency, Least Efficient first.
|
|
decoratedIslandListEfficSort = decoratedIslandList[:]
|
|
# decoratedIslandListEfficSort.sort(lambda A, B: cmp(B[2], A[2]))
|
|
|
|
try: decoratedIslandListEfficSort.sort(key = lambda A: -A[2])
|
|
except: decoratedIslandListEfficSort.sort(lambda A, B: cmp(B[2], A[2]))
|
|
|
|
# ================================================== THESE CAN BE TWEAKED.
|
|
# This is a quality value for the number of tests.
|
|
# from 1 to 4, generic quality value is from 1 to 100
|
|
USER_STEP_QUALITY = ((USER_FILL_HOLES_QUALITY - 1) / 25.0) + 1
|
|
|
|
# If 100 will test as long as there is enough free space.
|
|
# this is rarely enough, and testing takes a while, so lower quality speeds this up.
|
|
|
|
# 1 means they have the same quality
|
|
USER_FREE_SPACE_TO_TEST_QUALITY = 1 + (((100 - USER_FILL_HOLES_QUALITY)/100.0) *5)
|
|
|
|
#print 'USER_STEP_QUALITY', USER_STEP_QUALITY
|
|
#print 'USER_FREE_SPACE_TO_TEST_QUALITY', USER_FREE_SPACE_TO_TEST_QUALITY
|
|
|
|
removedCount = 0
|
|
|
|
areaIslandIdx = 0
|
|
ctrl = Window.Qual.CTRL
|
|
BREAK= False
|
|
while areaIslandIdx < len(decoratedIslandListAreaSort) and not BREAK:
|
|
sourceIsland = decoratedIslandListAreaSort[areaIslandIdx]
|
|
|
|
# Alredy packed?
|
|
if not sourceIsland[0]:
|
|
areaIslandIdx+=1
|
|
else:
|
|
efficIslandIdx = 0
|
|
while efficIslandIdx < len(decoratedIslandListEfficSort) and not BREAK:
|
|
|
|
if Window.GetKeyQualifiers() & ctrl:
|
|
BREAK= True
|
|
break
|
|
|
|
# Now we have 2 islands, is the efficience of the islands lowers theres an
|
|
# increasing likely hood that we can fit merge into the bigger UV island.
|
|
# this ensures a tight fit.
|
|
|
|
# Just use figures we have about user/unused area to see if they might fit.
|
|
|
|
targetIsland = decoratedIslandListEfficSort[efficIslandIdx]
|
|
|
|
|
|
if sourceIsland[0] == targetIsland[0] or\
|
|
not targetIsland[0] or\
|
|
not sourceIsland[0]:
|
|
pass
|
|
else:
|
|
|
|
# ([island, totFaceArea, efficiency, islandArea, w,h])
|
|
# Waisted space on target is greater then UV bounding island area.
|
|
|
|
|
|
# if targetIsland[3] > (sourceIsland[2]) and\ #
|
|
# print USER_FREE_SPACE_TO_TEST_QUALITY, 'ass'
|
|
if targetIsland[2] > (sourceIsland[1] * USER_FREE_SPACE_TO_TEST_QUALITY) and\
|
|
targetIsland[4] > sourceIsland[4] and\
|
|
targetIsland[5] > sourceIsland[5]:
|
|
|
|
# DEBUG # print '%.10f %.10f' % (targetIsland[3], sourceIsland[1])
|
|
|
|
# These enough spare space lets move the box until it fits
|
|
|
|
# How many times does the source fit into the target x/y
|
|
blockTestXUnit = targetIsland[4]/sourceIsland[4]
|
|
blockTestYUnit = targetIsland[5]/sourceIsland[5]
|
|
|
|
boxLeft = 0
|
|
|
|
|
|
# Distllllance we can move between whilst staying inside the targets bounds.
|
|
testWidth = targetIsland[4] - sourceIsland[4]
|
|
testHeight = targetIsland[5] - sourceIsland[5]
|
|
|
|
# Increment we move each test. x/y
|
|
#xIncrement = (testWidth / (blockTestXUnit * USER_STEP_QUALITY))
|
|
#yIncrement = (testHeight / (blockTestYUnit * USER_STEP_QUALITY))
|
|
#xIncrement= testWidth/USER_STEP_QUALITY
|
|
#yIncrement= testHeight/USER_STEP_QUALITY
|
|
# USER_STEP_QUALITY is 5.0 when quality is 100 and 1.0 when quality is 1
|
|
xIncrement = (sourceIsland[4] / targetIsland[4]) * ((6 - USER_STEP_QUALITY)*50)
|
|
yIncrement = (sourceIsland[5] / targetIsland[5]) * ((6 - USER_STEP_QUALITY)*50)
|
|
|
|
|
|
#~ print xIncrement, yIncrement, USER_STEP_QUALITY
|
|
|
|
# Make sure were not moving less then a 3rg of our width/height
|
|
if xIncrement<sourceIsland[4]/3:
|
|
xIncrement= sourceIsland[4]
|
|
if yIncrement<sourceIsland[5]/3:
|
|
yIncrement= sourceIsland[5]
|
|
|
|
|
|
boxLeft = 0 # Start 1 back so we can jump into the loop.
|
|
boxBottom= 0 #-yIncrement
|
|
|
|
##testcount= 0
|
|
|
|
while boxBottom <= testHeight:
|
|
# Should we use this? - not needed for now.
|
|
#if Window.GetKeyQualifiers() & ctrl:
|
|
# BREAK= True
|
|
# break
|
|
|
|
##testcount+=1
|
|
#print 'Testing intersect'
|
|
Intersect = islandIntersectUvIsland(sourceIsland, targetIsland, Vector(boxLeft, boxBottom))
|
|
#print 'Done', Intersect
|
|
if Intersect == 1: # Line intersect, dont bother with this any more
|
|
pass
|
|
|
|
if Intersect == 2: # Source inside target
|
|
'''
|
|
We have an intersection, if we are inside the target
|
|
then move us 1 whole width accross,
|
|
Its possible this is a bad idea since 2 skinny Angular faces
|
|
could join without 1 whole move, but its a lot more optimal to speed this up
|
|
since we have alredy tested for it.
|
|
|
|
It gives about 10% speedup with minimal errors.
|
|
'''
|
|
#print 'ass'
|
|
# Move the test allong its width + SMALL_NUM
|
|
#boxLeft += sourceIsland[4] + SMALL_NUM
|
|
boxLeft += sourceIsland[4]
|
|
elif Intersect == 0: # No intersection?? Place it.
|
|
# Progress
|
|
removedCount +=1
|
|
Window.DrawProgressBar(0.0, 'Merged: %i islands, Ctrl to finish early.' % removedCount)
|
|
|
|
# Move faces into new island and offset
|
|
targetIsland[0].extend(sourceIsland[0])
|
|
offset= Vector(boxLeft, boxBottom)
|
|
|
|
for f in sourceIsland[0]:
|
|
for uv in f.uv:
|
|
uv+= offset
|
|
|
|
sourceIsland[0][:] = [] # Empty
|
|
|
|
|
|
# Move edge loop into new and offset.
|
|
# targetIsland[6].extend(sourceIsland[6])
|
|
#while sourceIsland[6]:
|
|
targetIsland[6].extend( [ (\
|
|
(e[0]+offset, e[1]+offset, e[2])\
|
|
) for e in sourceIsland[6] ] )
|
|
|
|
sourceIsland[6][:] = [] # Empty
|
|
|
|
# Sort by edge length, reverse so biggest are first.
|
|
|
|
try: targetIsland[6].sort(key = lambda A: A[2])
|
|
except: targetIsland[6].sort(lambda B,A: cmp(A[2], B[2] ))
|
|
|
|
|
|
targetIsland[7].extend(sourceIsland[7])
|
|
offset= Vector(boxLeft, boxBottom, 0)
|
|
for p in sourceIsland[7]:
|
|
p+= offset
|
|
|
|
sourceIsland[7][:] = []
|
|
|
|
|
|
# Decrement the efficiency
|
|
targetIsland[1]+=sourceIsland[1] # Increment totFaceArea
|
|
targetIsland[2]-=sourceIsland[1] # Decrement efficiency
|
|
# IF we ever used these again, should set to 0, eg
|
|
sourceIsland[2] = 0 # No area if anyone wants to know
|
|
|
|
break
|
|
|
|
|
|
|
|
# INCREMENR NEXT LOCATION
|
|
if boxLeft > testWidth:
|
|
boxBottom += yIncrement
|
|
boxLeft = 0.0
|
|
else:
|
|
boxLeft += xIncrement
|
|
##print testcount
|
|
|
|
efficIslandIdx+=1
|
|
areaIslandIdx+=1
|
|
|
|
# Remove empty islands
|
|
i = len(islandList)
|
|
while i:
|
|
i-=1
|
|
if not islandList[i]:
|
|
del islandList[i] # Can increment islands removed here.
|
|
|
|
# Takes groups of faces. assumes face groups are UV groups.
|
|
def getUvIslands(faceGroups, me):
|
|
|
|
# Get seams so we dont cross over seams
|
|
edge_seams = {} # shoudl be a set
|
|
SEAM = Mesh.EdgeFlags.SEAM
|
|
for ed in me.edges:
|
|
if ed.flag & SEAM:
|
|
edge_seams[ed.key] = None # dummy var- use sets!
|
|
# Done finding seams
|
|
|
|
|
|
islandList = []
|
|
|
|
Window.DrawProgressBar(0.0, 'Splitting %d projection groups into UV islands:' % len(faceGroups))
|
|
#print '\tSplitting %d projection groups into UV islands:' % len(faceGroups),
|
|
# Find grouped faces
|
|
|
|
faceGroupIdx = len(faceGroups)
|
|
|
|
while faceGroupIdx:
|
|
faceGroupIdx-=1
|
|
faces = faceGroups[faceGroupIdx]
|
|
|
|
# Build edge dict
|
|
edge_users = {}
|
|
|
|
for i, f in enumerate(faces):
|
|
for ed_key in f.edge_keys:
|
|
if edge_seams.has_key(ed_key): # DELIMIT SEAMS! ;)
|
|
edge_users[ed_key] = [] # so as not to raise an error
|
|
else:
|
|
try: edge_users[ed_key].append(i)
|
|
except: edge_users[ed_key] = [i]
|
|
|
|
# Modes
|
|
# 0 - face not yet touched.
|
|
# 1 - added to island list, and need to search
|
|
# 2 - touched and searched - dont touch again.
|
|
face_modes = [0] * len(faces) # initialize zero - untested.
|
|
|
|
face_modes[0] = 1 # start the search with face 1
|
|
|
|
newIsland = []
|
|
|
|
newIsland.append(faces[0])
|
|
|
|
|
|
ok = True
|
|
while ok:
|
|
|
|
ok = True
|
|
while ok:
|
|
ok= False
|
|
for i in xrange(len(faces)):
|
|
if face_modes[i] == 1: # search
|
|
for ed_key in faces[i].edge_keys:
|
|
for ii in edge_users[ed_key]:
|
|
if i != ii and face_modes[ii] == 0:
|
|
face_modes[ii] = ok = 1 # mark as searched
|
|
newIsland.append(faces[ii])
|
|
|
|
# mark as searched, dont look again.
|
|
face_modes[i] = 2
|
|
|
|
islandList.append(newIsland)
|
|
|
|
ok = False
|
|
for i in xrange(len(faces)):
|
|
if face_modes[i] == 0:
|
|
newIsland = []
|
|
newIsland.append(faces[i])
|
|
|
|
face_modes[i] = ok = 1
|
|
break
|
|
# if not ok will stop looping
|
|
|
|
Window.DrawProgressBar(0.1, 'Optimizing Rotation for %i UV Islands' % len(islandList))
|
|
|
|
for island in islandList:
|
|
optiRotateUvIsland(island)
|
|
|
|
return islandList
|
|
|
|
|
|
def packIslands(islandList):
|
|
if USER_FILL_HOLES:
|
|
Window.DrawProgressBar(0.1, 'Merging Islands (Ctrl: skip merge)...')
|
|
mergeUvIslands(islandList) # Modify in place
|
|
|
|
|
|
# Now we have UV islands, we need to pack them.
|
|
|
|
# Make a synchronised list with the islands
|
|
# so we can box pak the islands.
|
|
boxes2Pack = []
|
|
|
|
# Keep a list of X/Y offset so we can save time by writing the
|
|
# uv's and packed data in one pass.
|
|
islandOffsetList = []
|
|
|
|
islandIdx = 0
|
|
|
|
while islandIdx < len(islandList):
|
|
minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
|
|
|
|
w, h = maxx-minx, maxy-miny
|
|
|
|
if USER_ISLAND_MARGIN:
|
|
minx -= USER_ISLAND_MARGIN# *w
|
|
miny -= USER_ISLAND_MARGIN# *h
|
|
maxx += USER_ISLAND_MARGIN# *w
|
|
maxy += USER_ISLAND_MARGIN# *h
|
|
|
|
# recalc width and height
|
|
w, h = maxx-minx, maxy-miny
|
|
|
|
if w < 0.00001 or h < 0.00001:
|
|
del islandList[islandIdx]
|
|
islandIdx -=1
|
|
continue
|
|
|
|
'''Save the offset to be applied later,
|
|
we could apply to the UVs now and allign them to the bottom left hand area
|
|
of the UV coords like the box packer imagines they are
|
|
but, its quicker just to remember their offset and
|
|
apply the packing and offset in 1 pass '''
|
|
islandOffsetList.append((minx, miny))
|
|
|
|
# Add to boxList. use the island idx for the BOX id.
|
|
boxes2Pack.append([islandIdx, w,h])
|
|
islandIdx+=1
|
|
|
|
# Now we have a list of boxes to pack that syncs
|
|
# with the islands.
|
|
|
|
#print '\tPacking UV Islands...'
|
|
Window.DrawProgressBar(0.7, 'Packing %i UV Islands...' % len(boxes2Pack) )
|
|
|
|
time1 = sys.time()
|
|
packWidth, packHeight, packedLs = boxpack2d.boxPackIter(boxes2Pack)
|
|
# print 'Box Packing Time:', sys.time() - time1
|
|
|
|
#if len(pa ckedLs) != len(islandList):
|
|
# raise "Error packed boxes differes from original length"
|
|
|
|
#print '\tWriting Packed Data to faces'
|
|
Window.DrawProgressBar(0.8, 'Writing Packed Data to faces')
|
|
|
|
# Sort by ID, so there in sync again
|
|
try: packedLs.sort(lambda key = A: A[0])
|
|
except: packedLs.sort(lambda A, B: cmp(A[0] , B[0]))
|
|
|
|
islandIdx = len(islandList)
|
|
# Having these here avoids devide by 0
|
|
if islandIdx:
|
|
|
|
if USER_STRETCH_ASPECT:
|
|
# Maximize to uv area?? Will write a normalize function.
|
|
xfactor = 1.0 / packWidth
|
|
yfactor = 1.0 / packHeight
|
|
else:
|
|
# Keep proportions.
|
|
xfactor = yfactor = 1.0 / max(packWidth, packHeight)
|
|
|
|
while islandIdx:
|
|
islandIdx -=1
|
|
# Write the packed values to the UV's
|
|
|
|
|
|
xoffset = packedLs[islandIdx][1] - islandOffsetList[islandIdx][0]
|
|
yoffset = packedLs[islandIdx][2] - islandOffsetList[islandIdx][1]
|
|
|
|
for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box
|
|
for uv in f.uv:
|
|
uv.x= (uv.x+xoffset) * xfactor
|
|
uv.y= (uv.y+yoffset) * yfactor
|
|
|
|
|
|
|
|
def VectoMat(vec):
|
|
a3 = vec.__copy__().normalize()
|
|
|
|
up = Vector(0,0,1)
|
|
if abs(DotVecs(a3, up)) == 1.0:
|
|
up = Vector(0,1,0)
|
|
|
|
a1 = CrossVecs(a3, up).normalize()
|
|
a2 = CrossVecs(a3, a1)
|
|
return Matrix([a1[0], a1[1], a1[2]], [a2[0], a2[1], a2[2]], [a3[0], a3[1], a3[2]])
|
|
|
|
|
|
|
|
class thickface(object):
|
|
__slost__= 'v', 'uv', 'no', 'area', 'edge_keys'
|
|
def __init__(self, face):
|
|
self.v = face.v
|
|
self.uv = face.uv
|
|
self.no = face.no
|
|
self.area = face.area
|
|
self.edge_keys = face.edge_keys
|
|
|
|
global ob
|
|
ob = None
|
|
def main():
|
|
global USER_FILL_HOLES
|
|
global USER_FILL_HOLES_QUALITY
|
|
global USER_STRETCH_ASPECT
|
|
global USER_ISLAND_MARGIN
|
|
|
|
objects= Scene.GetCurrent().objects
|
|
|
|
# Use datanames as kesy so as not to unwrap a mesh more then once.
|
|
obList = dict([(ob.getData(name_only=1), ob) for ob in objects.context if ob.type == 'Mesh'])
|
|
|
|
|
|
# Face select object may not be selected.
|
|
ob = objects.active
|
|
if ob and ob.sel == 0 and ob.type == 'Mesh':
|
|
# Add to the list
|
|
obList[ob.getData(name_only=1)] = ob
|
|
del objects
|
|
|
|
obList = obList.values() # turn from a dict to a list.
|
|
|
|
if not obList:
|
|
Draw.PupMenu('error, no selected mesh objects')
|
|
return
|
|
|
|
# Create the variables.
|
|
USER_PROJECTION_LIMIT = Draw.Create(66)
|
|
USER_ONLY_SELECTED_FACES = Draw.Create(1)
|
|
USER_SHARE_SPACE = Draw.Create(1) # Only for hole filling.
|
|
USER_STRETCH_ASPECT = Draw.Create(1) # Only for hole filling.
|
|
USER_ISLAND_MARGIN = Draw.Create(0.0) # Only for hole filling.
|
|
USER_FILL_HOLES = Draw.Create(0)
|
|
USER_FILL_HOLES_QUALITY = Draw.Create(50) # Only for hole filling.
|
|
|
|
|
|
pup_block = [\
|
|
'Projection',\
|
|
('Angle Limit:', USER_PROJECTION_LIMIT, 1, 89, 'lower for more projection groups, higher for less distortion.'),\
|
|
('Selected Faces Only', USER_ONLY_SELECTED_FACES, 'Use only selected faces from all selected meshes.'),\
|
|
'',\
|
|
'UV Layout',\
|
|
('Share Tex Space', USER_SHARE_SPACE, 'Objects Share texture space, map all objects into 1 uvmap.'),\
|
|
('Stretch to bounds', USER_STRETCH_ASPECT, 'Stretch the final output to texture bounds.'),\
|
|
('Island Margin:', USER_ISLAND_MARGIN, 0.0, 0.25, 'Margin to reduce bleed from adjacent islands.'),\
|
|
'',\
|
|
'',\
|
|
'',\
|
|
'',\
|
|
'Fill in empty areas',\
|
|
('Fill Holes', USER_FILL_HOLES, 'Fill in empty areas reduced texture waistage (slow).'),\
|
|
('Fill Quality:', USER_FILL_HOLES_QUALITY, 1, 100, 'Depends on fill holes, how tightly to fill UV holes, (higher is slower)'),\
|
|
]
|
|
|
|
# Reuse variable
|
|
if len(obList) == 1:
|
|
ob = "Unwrap %i Selected Mesh"
|
|
else:
|
|
ob = "Unwrap %i Selected Meshes"
|
|
|
|
# HACK, loop until mouse is lifted.
|
|
'''
|
|
while Window.GetMouseButtons() != 0:
|
|
sys.sleep(10)
|
|
'''
|
|
|
|
if not Draw.PupBlock(ob % len(obList), pup_block):
|
|
return
|
|
del ob
|
|
|
|
# Convert from being button types
|
|
USER_PROJECTION_LIMIT = USER_PROJECTION_LIMIT.val
|
|
USER_ONLY_SELECTED_FACES = USER_ONLY_SELECTED_FACES.val
|
|
USER_SHARE_SPACE = USER_SHARE_SPACE.val
|
|
USER_STRETCH_ASPECT = USER_STRETCH_ASPECT.val
|
|
USER_ISLAND_MARGIN = USER_ISLAND_MARGIN.val * 10
|
|
USER_FILL_HOLES = USER_FILL_HOLES.val
|
|
USER_FILL_HOLES_QUALITY = USER_FILL_HOLES_QUALITY.val
|
|
|
|
|
|
USER_PROJECTION_LIMIT_CONVERTED = cos(USER_PROJECTION_LIMIT * DEG_TO_RAD)
|
|
USER_PROJECTION_LIMIT_HALF_CONVERTED = cos((USER_PROJECTION_LIMIT/2) * DEG_TO_RAD)
|
|
|
|
|
|
# Toggle Edit mode
|
|
is_editmode = Window.EditMode()
|
|
if is_editmode:
|
|
Window.EditMode(0)
|
|
# Assume face select mode! an annoying hack to toggle face select mode because Mesh dosent like faceSelectMode.
|
|
|
|
if USER_SHARE_SPACE:
|
|
# Sort by data name so we get consistand results
|
|
try: obList.sort(key = lambda ob: ob.getData(name_only=1))
|
|
except: obList.sort(lambda ob1, ob2: cmp( ob1.getData(name_only=1), ob2.getData(name_only=1) ))
|
|
|
|
collected_islandList= []
|
|
|
|
Window.WaitCursor(1)
|
|
SELECT_FLAG = Mesh.FaceFlags['SELECT']
|
|
time1 = sys.time()
|
|
for ob in obList:
|
|
me = ob.getData(mesh=1)
|
|
|
|
if not me.faceUV: # Mesh has no UV Coords, dont bother.
|
|
me.faceUV= True
|
|
|
|
if USER_ONLY_SELECTED_FACES:
|
|
meshFaces = [thickface(f) for f in me.faces if f.flag & SELECT_FLAG]
|
|
else:
|
|
meshFaces = map(thickface, me.faces)
|
|
|
|
if not meshFaces:
|
|
continue
|
|
|
|
#print '\n\n\nArchimap UV Unwrapper, mapping "%s", %i faces.' % (me.name, len(meshFaces))
|
|
Window.DrawProgressBar(0.1, 'Archimap UV Unwrapper, mapping "%s", %i faces.' % (me.name, len(meshFaces)))
|
|
|
|
# Generate Projection
|
|
projectVecs = [] # We add to this allong the way
|
|
|
|
# =======
|
|
# Generate a projection list from face normals, this is ment to be smart :)
|
|
|
|
# make a list of face props that are in sync with meshFaces
|
|
# Make a Face List that is sorted by area.
|
|
# meshFaces = []
|
|
|
|
# meshFaces.sort( lambda a, b: cmp(b.area , a.area) ) # Biggest first.
|
|
try: meshFaces.sort( lambda a: -a.area )
|
|
except: meshFaces.sort( lambda a, b: cmp(b.area , a.area) )
|
|
|
|
# remove all zero area faces
|
|
while meshFaces and meshFaces[-1].area <= SMALL_NUM:
|
|
# Set their UV's to 0,0
|
|
for uv in meshFaces[-1].uv:
|
|
uv.zero()
|
|
meshFaces.pop()
|
|
|
|
# Smallest first is slightly more efficient, but if the user cancels early then its better we work on the larger data.
|
|
|
|
# Generate Projection Vecs
|
|
# 0d is 1.0
|
|
# 180 IS -0.59846
|
|
|
|
|
|
# Initialize projectVecs
|
|
newProjectVec = meshFaces[0].no
|
|
newProjectMeshFaces = [meshFaces[0]] # Popping stuffs it up.
|
|
|
|
|
|
# Predent that the most unique angke is ages away to start the loop off
|
|
mostUniqueAngle = -1.0
|
|
|
|
# This is popped
|
|
tempMeshFaces = meshFaces[:]
|
|
|
|
while 1:
|
|
# If theres none there then start with the largest face
|
|
|
|
# Pick the face thats most different to all existing angles :)
|
|
mostUniqueAngle = 1.0 # 1.0 is 0d. no difference.
|
|
mostUniqueIndex = 0 # fake
|
|
|
|
fIdx = len(tempMeshFaces)
|
|
|
|
while fIdx:
|
|
fIdx-=1
|
|
angleDifference = -1.0 # 180d difference.
|
|
|
|
# Get the closest vec angle we are to.
|
|
for p in projectVecs:
|
|
temp_angle_diff= DotVecs(p, tempMeshFaces[fIdx].no)
|
|
|
|
if angleDifference < temp_angle_diff:
|
|
angleDifference= temp_angle_diff
|
|
|
|
if angleDifference < mostUniqueAngle:
|
|
# We have a new most different angle
|
|
mostUniqueIndex = fIdx
|
|
mostUniqueAngle = angleDifference
|
|
|
|
|
|
if mostUniqueAngle < USER_PROJECTION_LIMIT_CONVERTED:
|
|
#print 'adding', mostUniqueAngle, USER_PROJECTION_LIMIT, len(newProjectMeshFaces)
|
|
newProjectVec = tempMeshFaces[mostUniqueIndex].no
|
|
newProjectMeshFaces = [tempMeshFaces.pop(mostUniqueIndex)]
|
|
else:
|
|
if len(projectVecs) >= 1: # Must have at least 2 projections
|
|
break
|
|
|
|
|
|
# Now we have found the most different vector, add all the faces that are close.
|
|
fIdx = len(tempMeshFaces)
|
|
while fIdx:
|
|
fIdx -= 1
|
|
|
|
# Use half the angle limit so we dont overweight faces towards this
|
|
# normal and hog all the faces.
|
|
if DotVecs(newProjectVec, tempMeshFaces[fIdx].no) > USER_PROJECTION_LIMIT_HALF_CONVERTED:
|
|
newProjectMeshFaces.append(tempMeshFaces.pop(fIdx))
|
|
|
|
|
|
# Now weight the vector to all its faces, will give a more direct projection
|
|
# if the face its self was not representive of the normal from surrounding faces.
|
|
averageVec = Vector(0,0,0)
|
|
for fprop in newProjectMeshFaces:
|
|
averageVec += (fprop.no * fprop.area)
|
|
|
|
if averageVec.x != 0 or averageVec.y != 0 or averageVec.z != 0: # Avoid NAN
|
|
averageVec.normalize()
|
|
projectVecs.append(averageVec)
|
|
|
|
# Now we have used it, ignore it.
|
|
newProjectMeshFaces = []
|
|
|
|
# If there are only zero area faces then its possible
|
|
# there are no projectionVecs
|
|
if not len(projectVecs):
|
|
Draw.PupMenu('error, no projection vecs where generated, 0 area faces can cause this.')
|
|
return
|
|
|
|
faceProjectionGroupList =[[] for i in xrange(len(projectVecs)) ]
|
|
|
|
# MAP and Arrange # We know there are 3 or 4 faces here
|
|
fIdx = len(meshFaces)
|
|
while fIdx:
|
|
fIdx-=1
|
|
fvec = meshFaces[fIdx].no
|
|
i = len(projectVecs)
|
|
|
|
# Initialize first
|
|
bestAng = DotVecs(fvec, projectVecs[0])
|
|
bestAngIdx = 0
|
|
|
|
# Cycle through the remaining, first alredy done
|
|
while i-1:
|
|
i-=1
|
|
|
|
newAng = DotVecs(fvec, projectVecs[i])
|
|
if newAng > bestAng: # Reverse logic for dotvecs
|
|
bestAng = newAng
|
|
bestAngIdx = i
|
|
|
|
# Store the area for later use.
|
|
faceProjectionGroupList[bestAngIdx].append(meshFaces[fIdx])
|
|
|
|
# Cull faceProjectionGroupList,
|
|
|
|
|
|
# Now faceProjectionGroupList is full of faces that face match the project Vecs list
|
|
i= len(projectVecs)
|
|
while i:
|
|
i-=1
|
|
# Account for projectVecs having no faces.
|
|
if not faceProjectionGroupList[i]:
|
|
continue
|
|
|
|
# Make a projection matrix from a unit length vector.
|
|
MatProj = VectoMat(projectVecs[i])
|
|
|
|
# Get the faces UV's from the projected vertex.
|
|
for f in faceProjectionGroupList[i]:
|
|
for j, v in enumerate(f.v):
|
|
f.uv[j][:] = (MatProj * v.co)[:2]
|
|
|
|
|
|
if USER_SHARE_SPACE:
|
|
# Should we collect and pack later?
|
|
islandList = getUvIslands(faceProjectionGroupList, me)
|
|
collected_islandList.extend(islandList)
|
|
|
|
else:
|
|
# Should we pack the islands for this 1 object?
|
|
islandList = getUvIslands(faceProjectionGroupList, me)
|
|
packIslands(islandList)
|
|
|
|
|
|
|
|
# update the mesh here if we need to.
|
|
|
|
# We want to pack all in 1 go, so pack now
|
|
if USER_SHARE_SPACE:
|
|
Window.DrawProgressBar(0.9, "Box Packing for all objects...")
|
|
packIslands(collected_islandList)
|
|
|
|
print "ArchiMap time: %.2f" % (sys.time() - time1)
|
|
Window.DrawProgressBar(0.9, "ArchiMap Done, time: %.2f sec." % (sys.time() - time1))
|
|
|
|
Window.DrawProgressBar(1.0, "")
|
|
Window.WaitCursor(0)
|
|
Window.RedrawAll()
|
|
|
|
if __name__ == '__main__':
|
|
main()
|