blender/source/gameengine/Ketsji/KX_PyMath.h
Benoit Bolsee 81a7bf2db9 BGE: fix more matrix transpose bugs in assignement to game object matrices.
Assignment to KX_GameObject localOrientation and
worldOrientation matrices was assuming row-major matrix
although reading these matrices was returning a column-major
MathUtils object.

The faulty function (PyMatTo) is fixed and all matrices
in python are now assumed column-major.

This function is also used in the following methods:

BL_Shader.setUniformMatrix4()
BL_Shader.setUniformMatrix3()

(No change in scripts if you didn't specify the optional
transpose parameter: the default value is changed so
that column-major matrices are assumed as before.)

KX_Camera.projection_matrix

(assignement to this attribute now requires a column-major
matrix and you must fix your script if you were setting
a value to this attribute.)
2009-12-22 23:38:09 +00:00

243 lines
6.8 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Initialize Python thingies.
*/
#ifndef __KX_PYMATH_H__
#define __KX_PYMATH_H__
#include "MT_Point2.h"
#include "MT_Point3.h"
#include "MT_Vector2.h"
#include "MT_Vector3.h"
#include "MT_Vector4.h"
#include "MT_Matrix3x3.h"
#include "MT_Matrix4x4.h"
#include "KX_Python.h"
#include "PyObjectPlus.h"
#ifndef DISABLE_PYTHON
#ifdef USE_MATHUTILS
extern "C" {
#include "../../blender/python/generic/Mathutils.h" /* so we can have mathutils callbacks */
}
#endif
inline unsigned int Size(const MT_Matrix4x4&) { return 4; }
inline unsigned int Size(const MT_Matrix3x3&) { return 3; }
inline unsigned int Size(const MT_Tuple2&) { return 2; }
inline unsigned int Size(const MT_Tuple3&) { return 3; }
inline unsigned int Size(const MT_Tuple4&) { return 4; }
/**
* Converts the given python matrix (column-major) to an MT class (row-major).
*/
template<class T>
bool PyMatTo(PyObject* pymat, T& mat)
{
bool noerror = true;
mat.setIdentity();
if (PySequence_Check(pymat))
{
unsigned int cols = PySequence_Size(pymat);
if (cols != Size(mat))
return false;
for (unsigned int x = 0; noerror && x < cols; x++)
{
PyObject *pycol = PySequence_GetItem(pymat, x); /* new ref */
if (!PyErr_Occurred() && PySequence_Check(pycol))
{
unsigned int rows = PySequence_Size(pycol);
if (rows != Size(mat))
noerror = false;
else
{
for( unsigned int y = 0; y < rows; y++)
{
PyObject *item = PySequence_GetItem(pycol, y); /* new ref */
mat[y][x] = PyFloat_AsDouble(item);
Py_DECREF(item);
}
}
} else
noerror = false;
Py_DECREF(pycol);
}
} else
noerror = false;
if (noerror==false)
PyErr_SetString(PyExc_TypeError, "could not be converted to a matrix (sequence of sequences)");
return noerror;
}
/**
* Converts a python sequence to a MT class.
*/
template<class T>
bool PyVecTo(PyObject* pyval, T& vec)
{
#ifdef USE_MATHUTILS
/* no need for BaseMath_ReadCallback() here, reading the sequences will do this */
if(VectorObject_Check(pyval)) {
VectorObject *pyvec= (VectorObject *)pyval;
BaseMath_ReadCallback(pyvec);
if (pyvec->size != Size(vec)) {
PyErr_Format(PyExc_AttributeError, "error setting vector, %d args, should be %d", pyvec->size, Size(vec));
return false;
}
vec.setValue((float *) pyvec->vec);
return true;
}
else if(QuaternionObject_Check(pyval)) {
QuaternionObject *pyquat= (QuaternionObject *)pyval;
BaseMath_ReadCallback(pyquat);
if (4 != Size(vec)) {
PyErr_Format(PyExc_AttributeError, "error setting vector, %d args, should be %d", 4, Size(vec));
return false;
}
/* xyzw -> wxyz reordering is done by PyQuatTo */
vec.setValue((float *) pyquat->quat);
return true;
}
else if(EulerObject_Check(pyval)) {
EulerObject *pyeul= (EulerObject *)pyval;
BaseMath_ReadCallback(pyeul);
if (3 != Size(vec)) {
PyErr_Format(PyExc_AttributeError, "error setting vector, %d args, should be %d", 3, Size(vec));
return false;
}
vec.setValue((float *) pyeul->eul);
return true;
} else
#endif
if(PyTuple_Check(pyval))
{
unsigned int numitems = PyTuple_GET_SIZE(pyval);
if (numitems != Size(vec)) {
PyErr_Format(PyExc_AttributeError, "error setting vector, %d args, should be %d", numitems, Size(vec));
return false;
}
for (unsigned int x = 0; x < numitems; x++)
vec[x] = PyFloat_AsDouble(PyTuple_GET_ITEM(pyval, x)); /* borrow ref */
if (PyErr_Occurred()) {
PyErr_SetString(PyExc_AttributeError, "one or more of the items in the sequence was not a float");
return false;
}
return true;
}
else if (PyObject_TypeCheck(pyval, (PyTypeObject *)&PyObjectPlus::Type))
{ /* note, include this check because PySequence_Check does too much introspection
* on the PyObject (like getting its __class__, on a BGE type this means searching up
* the parent list each time only to discover its not a sequence.
* GameObjects are often used as an alternative to vectors so this is a common case
* better to do a quick check for it, likely the error below will be ignored.
*
* This is not 'correct' since we have proxy type CListValues's which could
* contain floats/ints but there no cases of CValueLists being this way
*/
PyErr_Format(PyExc_AttributeError, "expected a sequence type");
return false;
}
else if (PySequence_Check(pyval))
{
unsigned int numitems = PySequence_Size(pyval);
if (numitems != Size(vec)) {
PyErr_Format(PyExc_AttributeError, "error setting vector, %d args, should be %d", numitems, Size(vec));
return false;
}
for (unsigned int x = 0; x < numitems; x++)
{
PyObject *item = PySequence_GetItem(pyval, x); /* new ref */
vec[x] = PyFloat_AsDouble(item);
Py_DECREF(item);
}
if (PyErr_Occurred()) {
PyErr_SetString(PyExc_AttributeError, "one or more of the items in the sequence was not a float");
return false;
}
return true;
} else
{
PyErr_Format(PyExc_AttributeError, "not a sequence type, expected a sequence of numbers size %d", Size(vec));
}
return false;
}
bool PyQuatTo(PyObject* pyval, MT_Quaternion &qrot);
bool PyOrientationTo(PyObject* pyval, MT_Matrix3x3 &mat, const char *error_prefix);
/**
* Converts an MT_Matrix4x4 to a python object.
*/
PyObject* PyObjectFrom(const MT_Matrix4x4 &mat);
/**
* Converts an MT_Matrix3x3 to a python object.
*/
PyObject* PyObjectFrom(const MT_Matrix3x3 &mat);
/**
* Converts an MT_Tuple2 to a python object.
*/
PyObject* PyObjectFrom(const MT_Tuple2 &vec);
/**
* Converts an MT_Tuple3 to a python object
*/
PyObject* PyObjectFrom(const MT_Tuple3 &vec);
#ifdef USE_MATHUTILS
/**
* Converts an MT_Quaternion to a python object.
*/
PyObject* PyObjectFrom(const MT_Quaternion &qrot);
#endif
/**
* Converts an MT_Tuple4 to a python object.
*/
PyObject* PyObjectFrom(const MT_Tuple4 &pos);
#endif
#endif // DISABLE_PYTHON