blender/source/gameengine/Converter/BL_MeshDeformer.cpp
Benoit Bolsee d95a109990 BGE modifier: generate correct physic shape, share static derived mesh, share display list.
This commit completes the support for modifiers in the BGE.
- The physic shape is generated according to the derived mesh. 
  This is true for all types of shapes and all types of 
  objects except soft body.
- Optimization for static derived mesh (mesh with modifiers
  but no armature and no shape keys). Replicas will share
  the derived mesh and the display list: less memory and
  faster rendering. With this optimization, the static 
  derived mesh will render as fast as if the modifiers were
  applied.

Known Limits:
- Sharing of mesh and display list is only possible between
  in-game replicas or dupligroup. If you want to instantiate
  multiple objects with modifiers, use dupligroup to ensure
  best memory and GPU utilization.
- rayCast() will interact with the derived mesh as follow:
  Hit position and hit normal are the real values according
  to the derived mesh but the KX_PolyProxy object refers to
  the original mesh. You should use it only to retrieve the
  material.
- Dynamic derived mesh have very poor performance:
  They use direct openGL calls for rendering (no support
  for display list and vertex array) and they dont't share
  the derived mesh memory. Always apply modifiers on dynamic
  mesh for best performance.
- Time dependent modifiers are not supported.
- Modifiers are not supported for Bullet soft body.
2009-05-14 13:47:08 +00:00

241 lines
6.2 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Simple deformation controller that restores a mesh to its rest position
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef WIN32
// This warning tells us about truncation of __long__ stl-generated names.
// It can occasionally cause DevStudio to have internal compiler warnings.
#pragma warning( disable : 4786 )
#endif
#include "RAS_IPolygonMaterial.h"
#include "BL_DeformableGameObject.h"
#include "BL_MeshDeformer.h"
#include "BL_SkinMeshObject.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "GEN_Map.h"
#include "STR_HashedString.h"
#include "BLI_arithb.h"
bool BL_MeshDeformer::Apply(RAS_IPolyMaterial*)
{
size_t i;
// only apply once per frame if the mesh is actually modified
if(m_pMeshObject->MeshModified() &&
m_lastDeformUpdate != m_gameobj->GetLastFrame()) {
// For each material
for(list<RAS_MeshMaterial>::iterator mit= m_pMeshObject->GetFirstMaterial();
mit != m_pMeshObject->GetLastMaterial(); ++ mit) {
if(!mit->m_slots[(void*)m_gameobj])
continue;
RAS_MeshSlot *slot = *mit->m_slots[(void*)m_gameobj];
RAS_MeshSlot::iterator it;
// for each array
for(slot->begin(it); !slot->end(it); slot->next(it)) {
// For each vertex
for(i=it.startvertex; i<it.endvertex; i++) {
RAS_TexVert& v = it.vertex[i];
v.SetXYZ(m_bmesh->mvert[v.getOrigIndex()].co);
}
}
}
m_lastDeformUpdate = m_gameobj->GetLastFrame();
return true;
}
return false;
}
BL_MeshDeformer::~BL_MeshDeformer()
{
if (m_transverts)
delete [] m_transverts;
if (m_transnors)
delete [] m_transnors;
}
void BL_MeshDeformer::ProcessReplica()
{
m_transverts = NULL;
m_transnors = NULL;
m_tvtot = 0;
m_bDynamic=false;
m_lastDeformUpdate = -1;
}
void BL_MeshDeformer::Relink(GEN_Map<class GEN_HashedPtr, void*>*map)
{
void **h_obj = (*map)[m_gameobj];
if (h_obj)
m_gameobj = (BL_DeformableGameObject*)(*h_obj);
else
m_gameobj = NULL;
}
/**
* @warning This function is expensive!
*/
void BL_MeshDeformer::RecalcNormals()
{
/* We don't normalize for performance, not doing it for faces normals
* gives area-weight normals which often look better anyway, and use
* GL_NORMALIZE so we don't have to do per vertex normalization either
* since the GPU can do it faster */
list<RAS_MeshMaterial>::iterator mit;
RAS_MeshSlot::iterator it;
size_t i;
/* set vertex normals to zero */
memset(m_transnors, 0, sizeof(float)*3*m_bmesh->totvert);
/* add face normals to vertices. */
for(mit = m_pMeshObject->GetFirstMaterial();
mit != m_pMeshObject->GetLastMaterial(); ++ mit) {
if(!mit->m_slots[(void*)m_gameobj])
continue;
RAS_MeshSlot *slot = *mit->m_slots[(void*)m_gameobj];
for(slot->begin(it); !slot->end(it); slot->next(it)) {
int nvert = (int)it.array->m_type;
for(i=0; i<it.totindex; i+=nvert) {
RAS_TexVert& v1 = it.vertex[it.index[i]];
RAS_TexVert& v2 = it.vertex[it.index[i+1]];
RAS_TexVert& v3 = it.vertex[it.index[i+2]];
RAS_TexVert *v4 = NULL;
const float *co1 = v1.getXYZ();
const float *co2 = v2.getXYZ();
const float *co3 = v3.getXYZ();
const float *co4 = NULL;
/* compute face normal */
float fnor[3], n1[3], n2[3];
if(nvert == 4) {
v4 = &it.vertex[it.index[i+3]];
co4 = v4->getXYZ();
n1[0]= co1[0]-co3[0];
n1[1]= co1[1]-co3[1];
n1[2]= co1[2]-co3[2];
n2[0]= co2[0]-co4[0];
n2[1]= co2[1]-co4[1];
n2[2]= co2[2]-co4[2];
}
else {
n1[0]= co1[0]-co2[0];
n2[0]= co2[0]-co3[0];
n1[1]= co1[1]-co2[1];
n2[1]= co2[1]-co3[1];
n1[2]= co1[2]-co2[2];
n2[2]= co2[2]-co3[2];
}
fnor[0]= n1[1]*n2[2] - n1[2]*n2[1];
fnor[1]= n1[2]*n2[0] - n1[0]*n2[2];
fnor[2]= n1[0]*n2[1] - n1[1]*n2[0];
Normalize(fnor);
/* add to vertices for smooth normals */
float *vn1 = m_transnors[v1.getOrigIndex()];
float *vn2 = m_transnors[v2.getOrigIndex()];
float *vn3 = m_transnors[v3.getOrigIndex()];
vn1[0] += fnor[0]; vn1[1] += fnor[1]; vn1[2] += fnor[2];
vn2[0] += fnor[0]; vn2[1] += fnor[1]; vn2[2] += fnor[2];
vn3[0] += fnor[0]; vn3[1] += fnor[1]; vn3[2] += fnor[2];
if(v4) {
float *vn4 = m_transnors[v4->getOrigIndex()];
vn4[0] += fnor[0]; vn4[1] += fnor[1]; vn4[2] += fnor[2];
}
/* in case of flat - just assign, the vertices are split */
if(v1.getFlag() & RAS_TexVert::FLAT) {
v1.SetNormal(fnor);
v2.SetNormal(fnor);
v3.SetNormal(fnor);
if(v4)
v4->SetNormal(fnor);
}
}
}
}
/* assign smooth vertex normals */
for(mit = m_pMeshObject->GetFirstMaterial();
mit != m_pMeshObject->GetLastMaterial(); ++ mit) {
if(!mit->m_slots[(void*)m_gameobj])
continue;
RAS_MeshSlot *slot = *mit->m_slots[(void*)m_gameobj];
for(slot->begin(it); !slot->end(it); slot->next(it)) {
for(i=it.startvertex; i<it.endvertex; i++) {
RAS_TexVert& v = it.vertex[i];
if(!(v.getFlag() & RAS_TexVert::FLAT))
v.SetNormal(m_transnors[v.getOrigIndex()]); //.safe_normalized()
}
}
}
}
void BL_MeshDeformer::VerifyStorage()
{
/* Ensure that we have the right number of verts assigned */
if (m_tvtot!=m_bmesh->totvert){
if (m_transverts)
delete [] m_transverts;
if (m_transnors)
delete [] m_transnors;
m_transverts=new float[m_bmesh->totvert][3];
m_transnors=new float[m_bmesh->totvert][3];
m_tvtot = m_bmesh->totvert;
}
}