blender/intern/cycles/device/device_multi.cpp
Brecht Van Lommel d7932ceea8 Cycles: multi GPU rendering support.
The rendering device is now set in User Preferences > System, where you can
choose between OpenCL/CUDA and devices. Per scene you can then still choose
to use CPU or GPU rendering.

Load balancing still needs to be improved, now it just splits the entire
render in two, that will be done in a separate commit.
2012-01-09 16:58:01 +00:00

440 lines
9.7 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include <sstream>
#include "device.h"
#include "device_intern.h"
#include "device_network.h"
#include "util_foreach.h"
#include "util_list.h"
#include "util_map.h"
#include "util_time.h"
CCL_NAMESPACE_BEGIN
class MultiDevice : public Device
{
public:
struct SubDevice {
SubDevice(Device *device_)
: device(device_) {}
Device *device;
map<device_ptr, device_ptr> ptr_map;
};
list<SubDevice> devices;
device_ptr unique_ptr;
MultiDevice(DeviceInfo& info, bool background_)
: unique_ptr(1)
{
Device *device;
background = background_;
foreach(DeviceInfo& subinfo, info.multi_devices) {
device = Device::create(subinfo, background);
devices.push_back(SubDevice(device));
}
#if 0 //def WITH_NETWORK
/* try to add network devices */
ServerDiscovery discovery(true);
time_sleep(1.0);
list<string> servers = discovery.get_server_list();
foreach(string& server, servers) {
device = device_network_create(info, server.c_str());
if(device)
devices.push_back(SubDevice(device));
}
#endif
}
~MultiDevice()
{
foreach(SubDevice& sub, devices)
delete sub.device;
}
bool support_full_kernel()
{
foreach(SubDevice& sub, devices) {
if(!sub.device->support_full_kernel())
return false;
}
return true;
}
const string& error_message()
{
foreach(SubDevice& sub, devices) {
if(sub.device->error_message() != "") {
if(error_msg == "")
error_msg = sub.device->error_message();
break;
}
}
return error_msg;
}
string description()
{
/* create map to find duplicate descriptions */
map<string, int> dupli_map;
map<string, int>::iterator dt;
foreach(SubDevice& sub, devices) {
string key = sub.device->description();
if(dupli_map.find(key) == dupli_map.end())
dupli_map[key] = 1;
else
dupli_map[key]++;
}
/* generate string */
stringstream desc;
bool first = true;
for(dt = dupli_map.begin(); dt != dupli_map.end(); dt++) {
if(!first) desc << ", ";
first = false;
if(dt->second > 1)
desc << dt->second << "x " << dt->first;
else
desc << dt->first;
}
return desc.str();
}
bool load_kernels(bool experimental)
{
foreach(SubDevice& sub, devices)
if(!sub.device->load_kernels(experimental))
return false;
return true;
}
void mem_alloc(device_memory& mem, MemoryType type)
{
foreach(SubDevice& sub, devices) {
mem.device_pointer = 0;
sub.device->mem_alloc(mem, type);
sub.ptr_map[unique_ptr] = mem.device_pointer;
}
mem.device_pointer = unique_ptr++;
}
void mem_copy_to(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_copy_to(mem);
}
mem.device_pointer = tmp;
}
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
{
device_ptr tmp = mem.device_pointer;
int i = 0, sub_h = h/devices.size();
foreach(SubDevice& sub, devices) {
int sy = y + i*sub_h;
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_copy_from(mem, sy, w, sh, elem);
i++;
}
mem.device_pointer = tmp;
}
void mem_zero(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_zero(mem);
}
mem.device_pointer = tmp;
}
void mem_free(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->mem_free(mem);
sub.ptr_map.erase(sub.ptr_map.find(tmp));
}
mem.device_pointer = 0;
}
void const_copy_to(const char *name, void *host, size_t size)
{
foreach(SubDevice& sub, devices)
sub.device->const_copy_to(name, host, size);
}
void tex_alloc(const char *name, device_memory& mem, bool interpolation, bool periodic)
{
foreach(SubDevice& sub, devices) {
mem.device_pointer = 0;
sub.device->tex_alloc(name, mem, interpolation, periodic);
sub.ptr_map[unique_ptr] = mem.device_pointer;
}
mem.device_pointer = unique_ptr++;
}
void tex_free(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->tex_free(mem);
sub.ptr_map.erase(sub.ptr_map.find(tmp));
}
mem.device_pointer = 0;
}
void pixels_alloc(device_memory& mem)
{
foreach(SubDevice& sub, devices) {
mem.device_pointer = 0;
sub.device->pixels_alloc(mem);
sub.ptr_map[unique_ptr] = mem.device_pointer;
}
mem.device_pointer = unique_ptr++;
}
void pixels_free(device_memory& mem)
{
device_ptr tmp = mem.device_pointer;
foreach(SubDevice& sub, devices) {
mem.device_pointer = sub.ptr_map[tmp];
sub.device->pixels_free(mem);
sub.ptr_map.erase(sub.ptr_map.find(tmp));
}
mem.device_pointer = 0;
}
void pixels_copy_from(device_memory& mem, int y, int w, int h)
{
device_ptr tmp = mem.device_pointer;
int i = 0, sub_h = h/devices.size();
foreach(SubDevice& sub, devices) {
int sy = y + i*sub_h;
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
mem.device_pointer = sub.ptr_map[tmp];
sub.device->pixels_copy_from(mem, sy, w, sh);
i++;
}
mem.device_pointer = tmp;
}
void draw_pixels(device_memory& rgba, int y, int w, int h, int dy, int width, int height, bool transparent)
{
device_ptr tmp = rgba.device_pointer;
int i = 0, sub_h = h/devices.size();
int sub_height = height/devices.size();
foreach(SubDevice& sub, devices) {
int sy = y + i*sub_h;
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
int sheight = (i == (int)devices.size() - 1)? height - sub_height*i: sub_height;
int sdy = dy + i*sub_height;
/* adjust math for w/width */
rgba.device_pointer = sub.ptr_map[tmp];
sub.device->draw_pixels(rgba, sy, w, sh, sdy, width, sheight, transparent);
i++;
}
rgba.device_pointer = tmp;
}
void task_add(DeviceTask& task)
{
ThreadQueue<DeviceTask> tasks;
task.split(tasks, devices.size());
foreach(SubDevice& sub, devices) {
DeviceTask subtask;
if(tasks.worker_wait_pop(subtask)) {
if(task.buffer) subtask.buffer = sub.ptr_map[task.buffer];
if(task.rng_state) subtask.rng_state = sub.ptr_map[task.rng_state];
if(task.rgba) subtask.rgba = sub.ptr_map[task.rgba];
if(task.shader_input) subtask.shader_input = sub.ptr_map[task.shader_input];
if(task.shader_output) subtask.shader_output = sub.ptr_map[task.shader_output];
sub.device->task_add(subtask);
}
}
}
void task_wait()
{
foreach(SubDevice& sub, devices)
sub.device->task_wait();
}
void task_cancel()
{
foreach(SubDevice& sub, devices)
sub.device->task_cancel();
}
};
Device *device_multi_create(DeviceInfo& info, bool background)
{
return new MultiDevice(info, background);
}
static void device_multi_add(vector<DeviceInfo>& devices, DeviceType type, bool with_display, const char *id_fmt, int num)
{
DeviceInfo info;
/* create map to find duplicate descriptions */
map<string, int> dupli_map;
map<string, int>::iterator dt;
int num_added = 0, num_display = 0;
foreach(DeviceInfo& subinfo, devices) {
if(subinfo.type == type) {
if(subinfo.display_device) {
if(with_display)
num_display++;
else
continue;
}
string key = subinfo.description;
if(dupli_map.find(key) == dupli_map.end())
dupli_map[key] = 1;
else
dupli_map[key]++;
info.multi_devices.push_back(subinfo);
if(subinfo.display_device)
info.display_device = true;
num_added++;
}
}
if(num_added <= 1 || (with_display && num_display == 0))
return;
/* generate string */
stringstream desc;
vector<string> last_tokens;
bool first = true;
for(dt = dupli_map.begin(); dt != dupli_map.end(); dt++) {
if(!first) desc << " + ";
first = false;
/* get name and count */
string name = dt->first;
int count = dt->second;
/* strip common prefixes */
vector<string> tokens;
string_split(tokens, dt->first);
if(tokens.size() > 1) {
int i;
for(i = 0; i < tokens.size() && i < last_tokens.size(); i++)
if(tokens[i] != last_tokens[i])
break;
name = "";
for(; i < tokens.size(); i++) {
name += tokens[i];
if(i != tokens.size() - 1)
name += " ";
}
}
last_tokens = tokens;
/* add */
if(count > 1)
desc << name << " (" << count << "x)";
else
desc << name;
}
/* add info */
info.type = DEVICE_MULTI;
info.description = desc.str();
info.id = string_printf(id_fmt, num);
info.display_device = with_display;
info.num = 0;
if(with_display)
devices.push_back(info);
else
devices.insert(devices.begin(), info);
}
void device_multi_info(vector<DeviceInfo>& devices)
{
int num = 0;
device_multi_add(devices, DEVICE_CUDA, false, "CUDA_MULTI_%d", num++);
device_multi_add(devices, DEVICE_CUDA, true, "CUDA_MULTI_%d", num++);
num = 0;
device_multi_add(devices, DEVICE_OPENCL, false, "OPENCL_MULTI_%d", num++);
device_multi_add(devices, DEVICE_OPENCL, true, "OPENCL_MULTI_%d", num++);
}
CCL_NAMESPACE_END