blender/intern/cycles/kernel/osl/bsdf_microfacet.cpp
Ton Roosendaal da376e0237 Cycles render engine, initial commit. This is the engine itself, blender modifications and build instructions will follow later.
Cycles uses code from some great open source projects, many thanks them:

* BVH building and traversal code from NVidia's "Understanding the Efficiency of Ray Traversal on GPUs":
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
* Open Shading Language for a large part of the shading system:
http://code.google.com/p/openshadinglanguage/
* Blender for procedural textures and a few other nodes.
* Approximate Catmull Clark subdivision from NVidia Mesh tools:
http://code.google.com/p/nvidia-mesh-tools/
* Sobol direction vectors from:
http://web.maths.unsw.edu.au/~fkuo/sobol/
* Film response functions from:
http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
2011-04-27 11:58:34 +00:00

534 lines
24 KiB
C++

/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <OpenImageIO/fmath.h>
#include <OSL/genclosure.h>
#include "osl_closures.h"
#include "util_math.h"
using namespace OSL;
CCL_NAMESPACE_BEGIN
// TODO: fresnel_dielectric is only used for derivatives, could be optimized
// TODO: refactor these two classes so they share everything by the microfacet
// distribution terms
// microfacet model with GGX facet distribution
// see http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf
template <int Refractive = 0>
class MicrofacetGGXClosure : public BSDFClosure {
public:
Vec3 m_N;
float m_ag; // width parameter (roughness)
float m_eta; // index of refraction (for fresnel term)
MicrofacetGGXClosure() : BSDFClosure(Labels::GLOSSY, Refractive ? Back : Front) { m_eta = 1.0f; }
void setup()
{
m_ag = clamp(m_ag, 1e-5f, 1.0f);
}
bool mergeable (const ClosurePrimitive *other) const {
const MicrofacetGGXClosure *comp = (const MicrofacetGGXClosure *)other;
return m_N == comp->m_N && m_ag == comp->m_ag &&
m_eta == comp->m_eta && BSDFClosure::mergeable(other);
}
size_t memsize () const { return sizeof(*this); }
const char *name () const {
return Refractive ? "microfacet_ggx_refraction" : "microfacet_ggx";
}
void print_on (std::ostream &out) const {
out << name() << " (";
out << "(" << m_N[0] << ", " << m_N[1] << ", " << m_N[2] << "), ";
out << m_ag << ", ";
out << m_eta;
out << ")";
}
float albedo (const Vec3 &omega_out) const
{
return 1.0f;
}
Color3 eval_reflect (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
{
if (Refractive == 1) return Color3 (0, 0, 0);
float cosNO = m_N.dot(omega_out);
float cosNI = m_N.dot(omega_in);
if (cosNI > 0 && cosNO > 0) {
// get half vector
Vec3 Hr = omega_in + omega_out;
Hr.normalize();
// eq. 20: (F*G*D)/(4*in*on)
// eq. 33: first we calculate D(m) with m=Hr:
float alpha2 = m_ag * m_ag;
float cosThetaM = m_N.dot(Hr);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = alpha2 / ((float) M_PI * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
// eq. 34: now calculate G1(i,m) and G1(o,m)
float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
float G = G1o * G1i;
float out = (G * D) * 0.25f / cosNO;
// eq. 24
float pm = D * cosThetaM;
// convert into pdf of the sampled direction
// eq. 38 - but see also:
// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
pdf = pm * 0.25f / Hr.dot(omega_out);
return Color3 (out, out, out);
}
return Color3 (0, 0, 0);
}
Color3 eval_transmit (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
{
if (Refractive == 0) return Color3 (0, 0, 0);
float cosNO = m_N.dot(omega_out);
float cosNI = m_N.dot(omega_in);
if (cosNO <= 0 || cosNI >= 0)
return Color3 (0, 0, 0); // vectors on same side -- not possible
// compute half-vector of the refraction (eq. 16)
Vec3 ht = -(m_eta * omega_in + omega_out);
Vec3 Ht = ht; Ht.normalize();
float cosHO = Ht.dot(omega_out);
float cosHI = Ht.dot(omega_in);
// eq. 33: first we calculate D(m) with m=Ht:
float alpha2 = m_ag * m_ag;
float cosThetaM = m_N.dot(Ht);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = alpha2 / ((float) M_PI * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
// eq. 34: now calculate G1(i,m) and G1(o,m)
float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
float G = G1o * G1i;
// probability
float invHt2 = 1 / ht.dot(ht);
pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
return Color3 (out, out, out);
}
ustring sample (const Vec3 &Ng,
const Vec3 &omega_out, const Vec3 &domega_out_dx, const Vec3 &domega_out_dy,
float randu, float randv,
Vec3 &omega_in, Vec3 &domega_in_dx, Vec3 &domega_in_dy,
float &pdf, Color3 &eval) const
{
float cosNO = m_N.dot(omega_out);
if (cosNO > 0) {
Vec3 X, Y, Z = m_N;
make_orthonormals(Z, X, Y);
// generate a random microfacet normal m
// eq. 35,36:
// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
// and sin(atan(x)) == x/sqrt(1+x^2)
float alpha2 = m_ag * m_ag;
float tanThetaM2 = alpha2 * randu / (1 - randu);
float cosThetaM = 1 / sqrtf(1 + tanThetaM2);
float sinThetaM = cosThetaM * sqrtf(tanThetaM2);
float phiM = 2 * float(M_PI) * randv;
Vec3 m = (cosf(phiM) * sinThetaM) * X +
(sinf(phiM) * sinThetaM) * Y +
cosThetaM * Z;
if (Refractive == 0) {
float cosMO = m.dot(omega_out);
if (cosMO > 0) {
// eq. 39 - compute actual reflected direction
omega_in = 2 * cosMO * m - omega_out;
if (Ng.dot(omega_in) > 0) {
// microfacet normal is visible to this ray
// eq. 33
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = alpha2 / (float(M_PI) * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
// eq. 24
float pm = D * cosThetaM;
// convert into pdf of the sampled direction
// eq. 38 - but see also:
// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
pdf = pm * 0.25f / cosMO;
// eval BRDF*cosNI
float cosNI = m_N.dot(omega_in);
// eq. 34: now calculate G1(i,m) and G1(o,m)
float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
float G = G1o * G1i;
// eq. 20: (F*G*D)/(4*in*on)
float out = (G * D) * 0.25f / cosNO;
eval.setValue(out, out, out);
domega_in_dx = (2 * m.dot(domega_out_dx)) * m - domega_out_dx;
domega_in_dy = (2 * m.dot(domega_out_dy)) * m - domega_out_dy;
/* disabled for now - gives texture filtering problems */
#if 0
// Since there is some blur to this reflection, make the
// derivatives a bit bigger. In theory this varies with the
// roughness but the exact relationship is complex and
// requires more ops than are practical.
domega_in_dx *= 10;
domega_in_dy *= 10;
#endif
}
}
} else {
// CAUTION: the i and o variables are inverted relative to the paper
// eq. 39 - compute actual refractive direction
Vec3 R, dRdx, dRdy;
Vec3 T, dTdx, dTdy;
bool inside;
fresnel_dielectric(m_eta, m, omega_out, domega_out_dx, domega_out_dy,
R, dRdx, dRdy,
T, dTdx, dTdy,
inside);
if (!inside) {
omega_in = T;
domega_in_dx = dTdx;
domega_in_dy = dTdy;
// eq. 33
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = alpha2 / (float(M_PI) * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
// eq. 24
float pm = D * cosThetaM;
// eval BRDF*cosNI
float cosNI = m_N.dot(omega_in);
// eq. 34: now calculate G1(i,m) and G1(o,m)
float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
float G = G1o * G1i;
// eq. 21
float cosHI = m.dot(omega_in);
float cosHO = m.dot(omega_out);
float Ht2 = m_eta * cosHI + cosHO;
Ht2 *= Ht2;
float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
// eq. 38 and eq. 17
pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
eval.setValue(out, out, out);
/* disabled for now - gives texture filtering problems */
#if 0
// Since there is some blur to this refraction, make the
// derivatives a bit bigger. In theory this varies with the
// roughness but the exact relationship is complex and
// requires more ops than are practical.
domega_in_dx *= 10;
domega_in_dy *= 10;
#endif
}
}
}
return Refractive ? Labels::TRANSMIT : Labels::REFLECT;
}
};
// microfacet model with Beckmann facet distribution
// see http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf
template <int Refractive = 0>
class MicrofacetBeckmannClosure : public BSDFClosure {
public:
Vec3 m_N;
float m_ab; // width parameter (roughness)
float m_eta; // index of refraction (for fresnel term)
MicrofacetBeckmannClosure() : BSDFClosure(Labels::GLOSSY, Refractive ? Back : Front) { }
void setup()
{
m_ab = clamp(m_ab, 1e-5f, 1.0f);
}
bool mergeable (const ClosurePrimitive *other) const {
const MicrofacetBeckmannClosure *comp = (const MicrofacetBeckmannClosure *)other;
return m_N == comp->m_N && m_ab == comp->m_ab &&
m_eta == comp->m_eta && BSDFClosure::mergeable(other);
}
size_t memsize () const { return sizeof(*this); }
const char * name () const {
return Refractive ? "microfacet_beckmann_refraction"
: "microfacet_beckmann";
}
void print_on (std::ostream &out) const
{
out << name() << " (";
out << "(" << m_N[0] << ", " << m_N[1] << ", " << m_N[2] << "), ";
out << m_ab << ", ";
out << m_eta;
out << ")";
}
float albedo (const Vec3 &omega_out) const
{
return 1.0f;
}
Color3 eval_reflect (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
{
if (Refractive == 1) return Color3 (0, 0, 0);
float cosNO = m_N.dot(omega_out);
float cosNI = m_N.dot(omega_in);
if (cosNO > 0 && cosNI > 0) {
// get half vector
Vec3 Hr = omega_in + omega_out;
Hr.normalize();
// eq. 20: (F*G*D)/(4*in*on)
// eq. 25: first we calculate D(m) with m=Hr:
float alpha2 = m_ab * m_ab;
float cosThetaM = m_N.dot(Hr);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
float out = (G * D) * 0.25f / cosNO;
// eq. 24
float pm = D * cosThetaM;
// convert into pdf of the sampled direction
// eq. 38 - but see also:
// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
pdf = pm * 0.25f / Hr.dot(omega_out);
return Color3 (out, out, out);
}
return Color3 (0, 0, 0);
}
Color3 eval_transmit (const Vec3 &omega_out, const Vec3 &omega_in, float& pdf) const
{
if (Refractive == 0) return Color3 (0, 0, 0);
float cosNO = m_N.dot(omega_out);
float cosNI = m_N.dot(omega_in);
if (cosNO <= 0 || cosNI >= 0)
return Color3 (0, 0, 0);
// compute half-vector of the refraction (eq. 16)
Vec3 ht = -(m_eta * omega_in + omega_out);
Vec3 Ht = ht; Ht.normalize();
float cosHO = Ht.dot(omega_out);
float cosHI = Ht.dot(omega_in);
// eq. 33: first we calculate D(m) with m=Ht:
float alpha2 = m_ab * m_ab;
float cosThetaM = m_N.dot(Ht);
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
// probability
float invHt2 = 1 / ht.dot(ht);
pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
return Color3 (out, out, out);
}
ustring sample (const Vec3 &Ng,
const Vec3 &omega_out, const Vec3 &domega_out_dx, const Vec3 &domega_out_dy,
float randu, float randv,
Vec3 &omega_in, Vec3 &domega_in_dx, Vec3 &domega_in_dy,
float &pdf, Color3 &eval) const
{
float cosNO = m_N.dot(omega_out);
if (cosNO > 0) {
Vec3 X, Y, Z = m_N;
make_orthonormals(Z, X, Y);
// generate a random microfacet normal m
// eq. 35,36:
// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
// and sin(atan(x)) == x/sqrt(1+x^2)
float alpha2 = m_ab * m_ab;
float tanThetaM = sqrtf(-alpha2 * logf(1 - randu));
float cosThetaM = 1 / sqrtf(1 + tanThetaM * tanThetaM);
float sinThetaM = cosThetaM * tanThetaM;
float phiM = 2 * float(M_PI) * randv;
Vec3 m = (cosf(phiM) * sinThetaM) * X +
(sinf(phiM) * sinThetaM) * Y +
cosThetaM * Z;
if (Refractive == 0) {
float cosMO = m.dot(omega_out);
if (cosMO > 0) {
// eq. 39 - compute actual reflected direction
omega_in = 2 * cosMO * m - omega_out;
if (Ng.dot(omega_in) > 0) {
// microfacet normal is visible to this ray
// eq. 25
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = tanThetaM * tanThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
// eq. 24
float pm = D * cosThetaM;
// convert into pdf of the sampled direction
// eq. 38 - but see also:
// eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
pdf = pm * 0.25f / cosMO;
// Eval BRDF*cosNI
float cosNI = m_N.dot(omega_in);
// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
// eq. 20: (F*G*D)/(4*in*on)
float out = (G * D) * 0.25f / cosNO;
eval.setValue(out, out, out);
domega_in_dx = (2 * m.dot(domega_out_dx)) * m - domega_out_dx;
domega_in_dy = (2 * m.dot(domega_out_dy)) * m - domega_out_dy;
/* disabled for now - gives texture filtering problems */
#if 0
// Since there is some blur to this reflection, make the
// derivatives a bit bigger. In theory this varies with the
// roughness but the exact relationship is complex and
// requires more ops than are practical.
domega_in_dx *= 10;
domega_in_dy *= 10;
#endif
}
}
} else {
// CAUTION: the i and o variables are inverted relative to the paper
// eq. 39 - compute actual refractive direction
Vec3 R, dRdx, dRdy;
Vec3 T, dTdx, dTdy;
bool inside;
fresnel_dielectric(m_eta, m, omega_out, domega_out_dx, domega_out_dy,
R, dRdx, dRdy,
T, dTdx, dTdy,
inside);
if (!inside) {
omega_in = T;
domega_in_dx = dTdx;
domega_in_dy = dTdy;
// eq. 33
float cosThetaM2 = cosThetaM * cosThetaM;
float tanThetaM2 = tanThetaM * tanThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float D = expf(-tanThetaM2 / alpha2) / (float(M_PI) * alpha2 * cosThetaM4);
// eq. 24
float pm = D * cosThetaM;
// eval BRDF*cosNI
float cosNI = m_N.dot(omega_in);
// eq. 26, 27: now calculate G1(i,m) and G1(o,m)
float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
float G = G1o * G1i;
// eq. 21
float cosHI = m.dot(omega_in);
float cosHO = m.dot(omega_out);
float Ht2 = m_eta * cosHI + cosHO;
Ht2 *= Ht2;
float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
// eq. 38 and eq. 17
pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
eval.setValue(out, out, out);
/* disabled for now - gives texture filtering problems */
#if 0
// Since there is some blur to this refraction, make the
// derivatives a bit bigger. In theory this varies with the
// roughness but the exact relationship is complex and
// requires more ops than are practical.
domega_in_dx *= 10;
domega_in_dy *= 10;
#endif
}
}
}
return Refractive ? Labels::TRANSMIT : Labels::REFLECT;
}
};
ClosureParam bsdf_microfacet_ggx_params[] = {
CLOSURE_VECTOR_PARAM(MicrofacetGGXClosure<0>, m_N),
CLOSURE_FLOAT_PARAM (MicrofacetGGXClosure<0>, m_ag),
CLOSURE_STRING_KEYPARAM("label"),
CLOSURE_FINISH_PARAM(MicrofacetGGXClosure<0>) };
ClosureParam bsdf_microfacet_ggx_refraction_params[] = {
CLOSURE_VECTOR_PARAM(MicrofacetGGXClosure<1>, m_N),
CLOSURE_FLOAT_PARAM (MicrofacetGGXClosure<1>, m_ag),
CLOSURE_FLOAT_PARAM (MicrofacetGGXClosure<1>, m_eta),
CLOSURE_STRING_KEYPARAM("label"),
CLOSURE_FINISH_PARAM(MicrofacetGGXClosure<1>) };
ClosureParam bsdf_microfacet_beckmann_params[] = {
CLOSURE_VECTOR_PARAM(MicrofacetBeckmannClosure<0>, m_N),
CLOSURE_FLOAT_PARAM (MicrofacetBeckmannClosure<0>, m_ab),
CLOSURE_STRING_KEYPARAM("label"),
CLOSURE_FINISH_PARAM(MicrofacetBeckmannClosure<0>) };
ClosureParam bsdf_microfacet_beckmann_refraction_params[] = {
CLOSURE_VECTOR_PARAM(MicrofacetBeckmannClosure<1>, m_N),
CLOSURE_FLOAT_PARAM (MicrofacetBeckmannClosure<1>, m_ab),
CLOSURE_FLOAT_PARAM (MicrofacetBeckmannClosure<1>, m_eta),
CLOSURE_STRING_KEYPARAM("label"),
CLOSURE_FINISH_PARAM(MicrofacetBeckmannClosure<1>) };
CLOSURE_PREPARE(bsdf_microfacet_ggx_prepare, MicrofacetGGXClosure<0>)
CLOSURE_PREPARE(bsdf_microfacet_ggx_refraction_prepare, MicrofacetGGXClosure<1>)
CLOSURE_PREPARE(bsdf_microfacet_beckmann_prepare, MicrofacetBeckmannClosure<0>)
CLOSURE_PREPARE(bsdf_microfacet_beckmann_refraction_prepare, MicrofacetBeckmannClosure<1>)
CCL_NAMESPACE_END