libmemif: example app can generate ICMP, dev perf tests (using icmpr-epoll)

Change-Id: Ib72ede51559754f606c0a1d57f4fb624d032caa6
Signed-off-by: Jakub Grajciar <Jakub.Grajciar@pantheon.tech>
This commit is contained in:
Jakub Grajciar
2017-11-02 14:33:27 +01:00
committed by Damjan Marion
parent 6184db357d
commit e4bb5bc7c1
6 changed files with 780 additions and 52 deletions

View File

@ -0,0 +1,94 @@
## Development performance test {#libmemif_devperftest_doc}
Simle test cases using ICMP. icmpr-epoll example app generates and transmits packets over memif interface.
#### TC1: LIB-VPP
Start icmpr-epoll example app and VPP.
VPP-side config:
```
DBGvpp# create memif id 0 master
DBGvpp# set int state memif0/0 up
DBGvpp# set int ip address memif0/0 192.168.1.1/24
```
icmpr-epoll:
```
conn 0 0 1
```
> Last argument specifies interrupt function to use. This function only respondes to ARP requests. This is important because, packet generation and transmitting is handled by a separate thread. Calling memif_tx_burst from multiple threads writing on same queue could transmit uninitialized buffers.
Once connection is established, you can send ping from VPP to icmpr-epoll app to learn its mac address.
```
DBGvpp# ping 192.168.1.2
```
> There should be no ICMP response. Only ARP response.
Now send ICMP requests from icmpr-epoll:
```
send <index> <num-of-packets> <ip_daddr> <hw_daddr>
send 0 5 192.168.1.1 02:fe:ff:ff:ff:ff
```
this command will create new thread which will generate icmp packets and transmit them over memif connection with specified index. Once the sequence is finished status will be printed.
###### Example results (owerview of test data)
(This test was run with modofication in VPP-memif plugin. The modification disallows memif tx node to allocate last ring buffer)
lib-tx: 200M (if ring full don't drop packets)
vpp-rx: 200M
vpp-tx: 200M - 50K (if ring full drop packets)
lib-rx: =vpp-tx
drop: ~0.025% (full ring)
pps: ~650K
multiple interfaces:
pps: divided
drop: constant
#### TC2: LIB-LIB
This test case will not drop packets if memif ring is full. Instead it will loop until all required packets have been sent.
Start two instances of icmpr-epoll example app.
instance 1:
```
conn 0 1 0
```
instance 2:
```
conn 0 0 1
send 0 5 192.168.1.1 aa:aa:aa:aa:aa:aa
```
> icmpr-epoll example app doesn't check ip or mac address so as long as the format is correct you can type anything as ip_daddr and hw_daddr arguments.
###### Example results (owerview of test data)
lib1-tx: 200M (if ring full don't drop packets)
lib2-rx: 200M
lib2-tx: 200M (if ring full don't drop packets)
lib1-rx: 200M
drop: obsolete
pps: 4.5M
multiple interfaces:
not tested (excpected same as TC1)
#### TC3: LIB-LIB
Start two instances of icmpr-epoll example app.
instance 1:
```
conn 0 1
```
instance 2:
```
conn 0 0 1
send 0 5 192.168.1.1 aa:aa:aa:aa:aa:aa
```
###### Example results (owerview of test data)
lib1-tx: 200M (if ring full don't drop packets)
lib2-rx: 200M
lib2-tx: 169626182 (if ring full drop packets)
lib1-rx: =lib2-tx
drop: ~15%
pps: ~6M
multiple interfaces:
not tested (excpected same as TC1)

View File

@ -187,7 +187,7 @@ Statistics: 5 sent, 4 received, 20% packet loss
#### icmp_responder master icmp_responder slave #### icmp_responder master icmp_responder slave
> Example apps can only repond to ping. This setup creates connection between two applications using libmemif. Traffic functionality is the same as when connection to VPP. App can receive ARP/ICMP request and transmit response, but can not send ARP/ICMP request. > This setup creates connection between two applications using libmemif. Traffic functionality is the same as when connection to VPP. App can receive ARP/ICMP request and transmit response.
Run two instances of icmpr-epoll example. Run two instances of icmpr-epoll example.
> If not running in container, make sure folder /run/vpp/ exists before creating memif master. > If not running in container, make sure folder /run/vpp/ exists before creating memif master.

File diff suppressed because it is too large Load Diff

View File

@ -137,8 +137,9 @@ resolve_eth_arp (struct ether_arp *eth_arp, void *eth_arp_resp,
memcpy (resp->arp_sha, memcpy (resp->arp_sha,
(((struct ether_header *) (eth_arp_resp - (((struct ether_header *) (eth_arp_resp -
sizeof (struct ether_header)))-> sizeof (struct
ether_shost), 6); ether_header)))->ether_shost),
6);
memcpy (resp->arp_spa, ip_addr, 4); memcpy (resp->arp_spa, ip_addr, 4);
@ -172,7 +173,7 @@ resolve_ip (struct iphdr *ip, void *ip_resp, uint8_t ip_addr[4])
resp->version = 4; resp->version = 4;
resp->tos = 0; resp->tos = 0;
/*len updated later */ /*len updated later */
resp->tot_len = 0x5400; resp->tot_len = 0x0000;
resp->id = 0; resp->id = 0;
resp->frag_off = 0; resp->frag_off = 0;
resp->ttl = 0x40; resp->ttl = 0x40;
@ -183,7 +184,7 @@ resolve_ip (struct iphdr *ip, void *ip_resp, uint8_t ip_addr[4])
((uint8_t *) & resp->saddr)[3] = ip_addr[3]; ((uint8_t *) & resp->saddr)[3] = ip_addr[3];
resp->daddr = ip->saddr; resp->daddr = ip->saddr;
resp->check = cksum (resp, sizeof (struct iphdr)); /* resp->check = cksum (resp, sizeof (struct iphdr)); */
return sizeof (struct iphdr); return sizeof (struct iphdr);
} }
@ -192,7 +193,7 @@ static ssize_t
resolve_icmp (struct icmphdr *icmp, void *icmp_resp) resolve_icmp (struct icmphdr *icmp, void *icmp_resp)
{ {
struct icmphdr *resp = (struct icmphdr *) icmp_resp; struct icmphdr *resp = (struct icmphdr *) icmp_resp;
resp->type = ICMP_ECHOREPLY; resp->type = 0x00;
resp->code = 0; resp->code = 0;
resp->un.echo.id = icmp->un.echo.id; resp->un.echo.id = icmp->un.echo.id;
resp->un.echo.sequence = icmp->un.echo.sequence; resp->un.echo.sequence = icmp->un.echo.sequence;
@ -208,10 +209,13 @@ resolve_packet (void *in_pck, ssize_t in_size,
{ {
struct ether_header *eh; struct ether_header *eh;
struct ether_arp *eah; struct ether_arp *eah;
struct iphdr *ip; struct iphdr *ip, *ip_out;
struct icmphdr *icmp; struct icmphdr *icmp;
*out_size = 0; *out_size = 0;
if ((in_pck == NULL) || (out_pck == NULL))
return -1;
eh = (struct ether_header *) in_pck; eh = (struct ether_header *) in_pck;
*out_size = resolve_eth (eh, out_pck); *out_size = resolve_eth (eh, out_pck);
@ -227,6 +231,7 @@ resolve_packet (void *in_pck, ssize_t in_size,
print_packet (in_pck + *out_size); print_packet (in_pck + *out_size);
#endif #endif
ip = (struct iphdr *) (in_pck + *out_size); ip = (struct iphdr *) (in_pck + *out_size);
ip_out = (struct iphdr *) (out_pck + *out_size);
*out_size += resolve_ip (ip, out_pck + *out_size, ip_addr); *out_size += resolve_ip (ip, out_pck + *out_size, ip_addr);
if (ip->protocol == 1) if (ip->protocol == 1)
{ {
@ -240,7 +245,95 @@ resolve_packet (void *in_pck, ssize_t in_size,
memcpy (out_pck + *out_size, in_pck + *out_size, memcpy (out_pck + *out_size, in_pck + *out_size,
in_size - *out_size); in_size - *out_size);
*out_size = in_size; *out_size = in_size;
ip_out->tot_len =
__bswap_16 (*out_size - sizeof (struct ether_header));
ip_out->check = cksum (ip_out, sizeof (struct iphdr));
} }
} }
return 0; return 0;
} }
static ssize_t
generate_eth (struct ether_header *eh, uint8_t hw_daddr[6])
{
uint8_t hw_addr[6];
int i;
for (i = 0; i < 6; i++)
{
hw_addr[i] = 'a';
}
memcpy (eh->ether_shost, hw_addr, 6);
memcpy (eh->ether_dhost, hw_daddr, 6);
eh->ether_type = 0x0008;
return sizeof (struct ether_header);
}
static ssize_t
generate_ip (struct iphdr *ip, uint8_t saddr[4], uint8_t daddr[4])
{
ip->ihl = 5;
ip->version = 4;
ip->tos = 0;
/*len updated later */
ip->tot_len = 0x5400;
ip->id = 0;
ip->frag_off = 0;
ip->ttl = 0x40;
ip->protocol = 1;
/* saddr */
((uint8_t *) & ip->saddr)[0] = saddr[0];
((uint8_t *) & ip->saddr)[1] = saddr[1];
((uint8_t *) & ip->saddr)[2] = saddr[2];
((uint8_t *) & ip->saddr)[3] = saddr[3];
/* daddr */
((uint8_t *) & ip->daddr)[0] = daddr[0];
((uint8_t *) & ip->daddr)[1] = daddr[1];
((uint8_t *) & ip->daddr)[2] = daddr[2];
((uint8_t *) & ip->daddr)[3] = daddr[3];
ip->check = cksum (ip, sizeof (struct iphdr));
return sizeof (struct iphdr);
}
static ssize_t
generate_icmp (struct icmphdr *icmp, uint32_t seq)
{
icmp->type = ICMP_ECHO;
icmp->code = 0;
icmp->un.echo.id = 0;
icmp->un.echo.sequence = seq;
return sizeof (struct icmphdr);
}
int
generate_packet (void *pck, uint32_t * size, uint8_t saddr[4],
uint8_t daddr[4], uint8_t hw_daddr[6], uint32_t seq)
{
struct ether_header *eh;
struct iphdr *ip;
struct icmphdr *icmp;
*size = 0;
eh = (struct ether_header *) pck;
*size += generate_eth (eh, hw_daddr);
ip = (struct iphdr *) (pck + *size);
*size += generate_ip (ip, saddr, daddr);
icmp = (struct icmphdr *) (pck + *size);
*size += generate_icmp (icmp, seq);
((struct icmphdr *) (pck + *size - sizeof (struct icmphdr)))->checksum =
cksum (pck + *size - sizeof (struct icmphdr), sizeof (struct icmphdr));
ip->tot_len = __bswap_16 (*size - sizeof (struct ether_header));
ip->check = 0;
ip->check = cksum (ip, sizeof (struct iphdr));
return 0;
}

View File

@ -21,6 +21,9 @@
int resolve_packet (void *in_pck, ssize_t in_size, void *out_pck, int resolve_packet (void *in_pck, ssize_t in_size, void *out_pck,
uint32_t * out_size, uint8_t ip_addr[4]); uint32_t * out_size, uint8_t ip_addr[4]);
int generate_packet (void *pck, uint32_t * size, uint8_t saddr[4],
uint8_t daddr[4], uint8_t hw_daddr[6], uint32_t seq);
int print_packet (void *pck); int print_packet (void *pck);
#endif /* _ICMP_PROTO_H_ */ #endif /* _ICMP_PROTO_H_ */

View File

@ -72,3 +72,4 @@ Continue with @ref libmemif_example_setup which contains instructions on how to
- @subpage libmemif_examples_doc - @subpage libmemif_examples_doc
- @subpage libmemif_example_setup_doc - @subpage libmemif_example_setup_doc
- @subpage libmemif_gettingstarted_doc - @subpage libmemif_gettingstarted_doc
- @subpage libmemif_devperftest_doc