053d093524
Type: improvement Signed-off-by: Dave Barach <dave@barachs.net> Change-Id: Id28299a188feefa1899d835fd499f018af95d81b
173 lines
4.9 KiB
C
173 lines
4.9 KiB
C
/*
|
|
Copyright (c) 2011 Cisco and/or its affiliates.
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <vppinfra/anneal.h>
|
|
|
|
/*
|
|
* Optimize an objective function by simulated annealing
|
|
*
|
|
* Here are a couple of short, easily-understood
|
|
* descriptions of simulated annealing:
|
|
*
|
|
* http://www.cs.sandia.gov/opt/survey/sa.html
|
|
* Numerical Recipes in C, 2nd ed., 444ff
|
|
*
|
|
* The description in the Wikipedia is not helpful.
|
|
*
|
|
* The algorithm tries to produce a decent answer to combinatorially
|
|
* explosive optimization problems by analogy to slow cooling
|
|
* of hot metal, aka annealing.
|
|
*
|
|
* There are (at least) three problem-dependent annealing parameters
|
|
* to consider:
|
|
*
|
|
* t0, the initial "temperature. Should be set so that the probability
|
|
* of accepting a transition to a higher cost configuration is
|
|
* initially about 0.8.
|
|
*
|
|
* ntemps, the number of temperatures to use. Each successive temperature
|
|
* is some fraction of the previous temperature.
|
|
*
|
|
* nmoves_per_temp, the number of configurations to try at each temperature
|
|
*
|
|
* It is a black art to set ntemps, nmoves_per_temp, and the rate
|
|
* at which the temperature drops. Go too fast with too few iterations,
|
|
* and the computation falls into a local minimum instead of the
|
|
* (desired) global minimum.
|
|
*/
|
|
|
|
void
|
|
clib_anneal (clib_anneal_param_t * p)
|
|
{
|
|
f64 t;
|
|
f64 cost, prev_cost, delta_cost, initial_cost, best_cost;
|
|
f64 random_accept, delta_cost_over_t;
|
|
f64 total_increase = 0.0, average_increase;
|
|
u32 i, j;
|
|
u32 number_of_increases = 0;
|
|
u32 accepted_this_temperature;
|
|
u32 best_saves_this_temperature;
|
|
int accept;
|
|
|
|
t = p->initial_temperature;
|
|
best_cost = initial_cost = prev_cost = p->anneal_metric (p->opaque);
|
|
p->anneal_save_best_configuration (p->opaque);
|
|
|
|
if (p->flags & CLIB_ANNEAL_VERBOSE)
|
|
fformat (stdout, "Initial cost %.2f\n", initial_cost);
|
|
|
|
for (i = 0; i < p->number_of_temperatures; i++)
|
|
{
|
|
accepted_this_temperature = 0;
|
|
best_saves_this_temperature = 0;
|
|
|
|
p->anneal_restore_best_configuration (p->opaque);
|
|
cost = best_cost;
|
|
|
|
for (j = 0; j < p->number_of_configurations_per_temperature; j++)
|
|
{
|
|
p->anneal_new_configuration (p->opaque);
|
|
cost = p->anneal_metric (p->opaque);
|
|
|
|
delta_cost = cost - prev_cost;
|
|
|
|
/* cost function looks better, accept this move */
|
|
if (p->flags & CLIB_ANNEAL_MINIMIZE)
|
|
accept = delta_cost < 0.0;
|
|
else
|
|
accept = delta_cost > 0.0;
|
|
|
|
if (accept)
|
|
{
|
|
if (p->flags & CLIB_ANNEAL_MINIMIZE)
|
|
if (cost < best_cost)
|
|
{
|
|
if (p->flags & CLIB_ANNEAL_VERBOSE)
|
|
fformat (stdout, "New best cost %.2f\n", cost);
|
|
best_cost = cost;
|
|
p->anneal_save_best_configuration (p->opaque);
|
|
best_saves_this_temperature++;
|
|
}
|
|
|
|
accepted_this_temperature++;
|
|
prev_cost = cost;
|
|
continue;
|
|
}
|
|
|
|
/* cost function worse, keep stats to suggest t0 */
|
|
total_increase += (p->flags & CLIB_ANNEAL_MINIMIZE) ?
|
|
delta_cost : -delta_cost;
|
|
|
|
number_of_increases++;
|
|
|
|
/*
|
|
* Accept a higher cost with Pr { e^(-(delta_cost / T)) },
|
|
* equivalent to rnd[0,1] < e^(-(delta_cost / T))
|
|
*
|
|
* AKA, the Boltzmann factor.
|
|
*/
|
|
random_accept = random_f64 (&p->random_seed);
|
|
|
|
delta_cost_over_t = delta_cost / t;
|
|
|
|
if (random_accept < exp (-delta_cost_over_t))
|
|
{
|
|
accepted_this_temperature++;
|
|
prev_cost = cost;
|
|
continue;
|
|
}
|
|
p->anneal_restore_previous_configuration (p->opaque);
|
|
}
|
|
|
|
if (p->flags & CLIB_ANNEAL_VERBOSE)
|
|
{
|
|
fformat (stdout, "Temp %.2f, cost %.2f, accepted %d, bests %d\n", t,
|
|
prev_cost, accepted_this_temperature,
|
|
best_saves_this_temperature);
|
|
fformat (stdout, "Improvement %.2f\n", initial_cost - prev_cost);
|
|
fformat (stdout, "-------------\n");
|
|
}
|
|
|
|
t = t * p->temperature_step;
|
|
}
|
|
|
|
/*
|
|
* Empirically, one wants the probability of accepting a move
|
|
* at the initial temperature to be about 0.8.
|
|
*/
|
|
average_increase = total_increase / (f64) number_of_increases;
|
|
p->suggested_initial_temperature = average_increase / 0.22; /* 0.22 = -ln (0.8) */
|
|
|
|
p->final_temperature = t;
|
|
p->final_metric = p->anneal_metric (p->opaque);
|
|
|
|
if (p->flags & CLIB_ANNEAL_VERBOSE)
|
|
{
|
|
fformat (stdout, "Average cost increase from a bad move: %.2f\n",
|
|
average_increase);
|
|
fformat (stdout, "Suggested t0 = %.2f\n",
|
|
p->suggested_initial_temperature);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fd.io coding-style-patch-verification: ON
|
|
*
|
|
* Local Variables:
|
|
* eval: (c-set-style "gnu")
|
|
* End:
|
|
*/
|