Damjan Marion 548d70de68 misc: deprecate dpdk hqos
Not in functional state for a long time ...

Type: refactor

Change-Id: I2cc1525a6d49518cbc94faf6afbf0d2d0d515f56
Signed-off-by: Damjan Marion <damarion@cisco.com>
2020-01-30 21:38:14 +00:00

772 lines
22 KiB
C

/*
* Copyright(c) 2016 Intel Corporation. All rights reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/mount.h>
#include <string.h>
#include <fcntl.h>
#include <vppinfra/vec.h>
#include <vppinfra/error.h>
#include <vppinfra/format.h>
#include <vppinfra/bitmap.h>
#include <vnet/vnet.h>
#include <vnet/ethernet/ethernet.h>
#include <dpdk/device/dpdk.h>
#include <vlib/pci/pci.h>
#include <vlibmemory/api.h>
#include <vlibmemory/vl_memory_msg_enum.h> /* enumerate all vlib messages */
#define vl_typedefs /* define message structures */
#include <vlibmemory/vl_memory_api_h.h>
#undef vl_typedefs
/* instantiate all the print functions we know about */
#define vl_print(handle, ...) vlib_cli_output (handle, __VA_ARGS__)
#define vl_printfun
#include <vlibmemory/vl_memory_api_h.h>
#undef vl_printfun
#include <dpdk/device/dpdk_priv.h>
/***
*
* HQoS default configuration values
*
***/
static dpdk_device_config_hqos_t hqos_params_default = {
.hqos_thread_valid = 0,
.swq_size = 4096,
.burst_enq = 256,
.burst_deq = 220,
/*
* Packet field to identify the subport.
*
* Default value: Since only one subport is defined by default (see below:
* n_subports_per_port = 1), the subport ID is hardcoded to 0.
*/
.pktfield0_slabpos = 0,
.pktfield0_slabmask = 0,
/*
* Packet field to identify the pipe.
*
* Default value: Assuming Ethernet/IPv4/UDP packets, UDP payload bits 12 .. 23
*/
.pktfield1_slabpos = 40,
.pktfield1_slabmask = 0x0000000FFF000000LLU,
/* Packet field used as index into TC translation table to identify the traffic
* class and queue.
*
* Default value: Assuming Ethernet/IPv4 packets, IPv4 DSCP field
*/
.pktfield2_slabpos = 8,
.pktfield2_slabmask = 0x00000000000000FCLLU,
.tc_table = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
},
/* port */
.port = {
.name = NULL, /* Set at init */
.socket = 0, /* Set at init */
.rate = 1250000000, /* Assuming 10GbE port */
.mtu = 14 + 1500, /* Assuming Ethernet/IPv4 pkt (Ethernet FCS not included) */
.frame_overhead = RTE_SCHED_FRAME_OVERHEAD_DEFAULT,
.n_subports_per_port = 1,
.n_pipes_per_subport = 4096,
.qsize = {64, 64, 64, 64},
.pipe_profiles = NULL, /* Set at config */
.n_pipe_profiles = 1,
#ifdef RTE_SCHED_RED
.red_params = {
/* Traffic Class 0 Colors Green / Yellow / Red */
[0][0] = {.min_th = 48,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
[0][1] = {.min_th = 40,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
[0][2] = {.min_th = 32,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
/* Traffic Class 1 - Colors Green / Yellow / Red */
[1][0] = {.min_th = 48,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
[1][1] = {.min_th = 40,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
[1][2] = {.min_th = 32,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
/* Traffic Class 2 - Colors Green / Yellow / Red */
[2][0] = {.min_th = 48,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
[2][1] = {.min_th = 40,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
[2][2] = {.min_th = 32,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
/* Traffic Class 3 - Colors Green / Yellow / Red */
[3][0] = {.min_th = 48,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
[3][1] = {.min_th = 40,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9},
[3][2] = {.min_th = 32,.max_th = 64,.maxp_inv =
10,.wq_log2 = 9}
},
#endif /* RTE_SCHED_RED */
},
};
static struct rte_sched_subport_params hqos_subport_params_default = {
.tb_rate = 1250000000, /* 10GbE line rate (measured in bytes/second) */
.tb_size = 1000000,
.tc_rate = {1250000000, 1250000000, 1250000000, 1250000000},
.tc_period = 10,
};
static struct rte_sched_pipe_params hqos_pipe_params_default = {
.tb_rate = 305175, /* 10GbE line rate divided by 4K pipes */
.tb_size = 1000000,
.tc_rate = {305175, 305175, 305175, 305175},
.tc_period = 40,
#ifdef RTE_SCHED_SUBPORT_TC_OV
.tc_ov_weight = 1,
#endif
.wrr_weights = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
};
/***
*
* HQoS configuration
*
***/
int
dpdk_hqos_validate_mask (u64 mask, u32 n)
{
int count = __builtin_popcountll (mask);
int pos_lead = sizeof (u64) * 8 - count_leading_zeros (mask);
int pos_trail = count_trailing_zeros (mask);
int count_expected = __builtin_popcount (n - 1);
/* Handle the exceptions */
if (n == 0)
return -1; /* Error */
if ((mask == 0) && (n == 1))
return 0; /* OK */
if (((mask == 0) && (n != 1)) || ((mask != 0) && (n == 1)))
return -2; /* Error */
/* Check that mask is contiguous */
if ((pos_lead - pos_trail) != count)
return -3; /* Error */
/* Check that mask contains the expected number of bits set */
if (count != count_expected)
return -4; /* Error */
return 0; /* OK */
}
void
dpdk_device_config_hqos_pipe_profile_default (dpdk_device_config_hqos_t *
hqos, u32 pipe_profile_id)
{
memcpy (&hqos->pipe[pipe_profile_id], &hqos_pipe_params_default,
sizeof (hqos_pipe_params_default));
}
void
dpdk_device_config_hqos_default (dpdk_device_config_hqos_t * hqos)
{
struct rte_sched_subport_params *subport_params;
struct rte_sched_pipe_params *pipe_params;
u32 *pipe_map;
u32 i;
memcpy (hqos, &hqos_params_default, sizeof (hqos_params_default));
/* pipe */
vec_add2 (hqos->pipe, pipe_params, hqos->port.n_pipe_profiles);
for (i = 0; i < vec_len (hqos->pipe); i++)
memcpy (&pipe_params[i],
&hqos_pipe_params_default, sizeof (hqos_pipe_params_default));
hqos->port.pipe_profiles = hqos->pipe;
/* subport */
vec_add2 (hqos->subport, subport_params, hqos->port.n_subports_per_port);
for (i = 0; i < vec_len (hqos->subport); i++)
memcpy (&subport_params[i],
&hqos_subport_params_default,
sizeof (hqos_subport_params_default));
/* pipe profile */
vec_add2 (hqos->pipe_map,
pipe_map,
hqos->port.n_subports_per_port * hqos->port.n_pipes_per_subport);
for (i = 0; i < vec_len (hqos->pipe_map); i++)
pipe_map[i] = 0;
}
/***
*
* HQoS init
*
***/
clib_error_t *
dpdk_port_setup_hqos (dpdk_device_t * xd, dpdk_device_config_hqos_t * hqos)
{
vlib_thread_main_t *tm = vlib_get_thread_main ();
char name[32];
u32 subport_id, i;
int rv;
/* Detect the set of worker threads */
int worker_thread_first = 0;
int worker_thread_count = 0;
uword *p = hash_get_mem (tm->thread_registrations_by_name, "workers");
vlib_thread_registration_t *tr =
p ? (vlib_thread_registration_t *) p[0] : 0;
if (tr && tr->count > 0)
{
worker_thread_first = tr->first_index;
worker_thread_count = tr->count;
}
/* Allocate the per-thread device data array */
vec_validate_aligned (xd->hqos_wt, tm->n_vlib_mains - 1,
CLIB_CACHE_LINE_BYTES);
clib_memset (xd->hqos_wt, 0, tm->n_vlib_mains * sizeof (xd->hqos_wt[0]));
vec_validate_aligned (xd->hqos_ht, 0, CLIB_CACHE_LINE_BYTES);
clib_memset (xd->hqos_ht, 0, sizeof (xd->hqos_ht[0]));
/* Allocate space for one SWQ per worker thread in the I/O TX thread data structure */
vec_validate (xd->hqos_ht->swq, worker_thread_count);
/* SWQ */
for (i = 0; i < worker_thread_count + 1; i++)
{
u32 swq_flags = RING_F_SP_ENQ | RING_F_SC_DEQ;
snprintf (name, sizeof (name), "SWQ-worker%u-to-device%u", i,
xd->port_id);
xd->hqos_ht->swq[i] =
rte_ring_create (name, hqos->swq_size, xd->cpu_socket, swq_flags);
if (xd->hqos_ht->swq[i] == NULL)
return clib_error_return (0,
"SWQ-worker%u-to-device%u: rte_ring_create err",
i, xd->port_id);
}
/*
* HQoS
*/
/* HQoS port */
snprintf (name, sizeof (name), "HQoS%u", xd->port_id);
hqos->port.name = strdup (name);
if (hqos->port.name == NULL)
return clib_error_return (0, "HQoS%u: strdup err", xd->port_id);
hqos->port.socket = rte_eth_dev_socket_id (xd->port_id);
if (hqos->port.socket == SOCKET_ID_ANY)
hqos->port.socket = 0;
xd->hqos_ht->hqos = rte_sched_port_config (&hqos->port);
if (xd->hqos_ht->hqos == NULL)
return clib_error_return (0, "HQoS%u: rte_sched_port_config err",
xd->port_id);
/* HQoS subport */
for (subport_id = 0; subport_id < hqos->port.n_subports_per_port;
subport_id++)
{
u32 pipe_id;
rv =
rte_sched_subport_config (xd->hqos_ht->hqos, subport_id,
&hqos->subport[subport_id]);
if (rv)
return clib_error_return (0,
"HQoS%u subport %u: rte_sched_subport_config err (%d)",
xd->port_id, subport_id, rv);
/* HQoS pipe */
for (pipe_id = 0; pipe_id < hqos->port.n_pipes_per_subport; pipe_id++)
{
u32 pos = subport_id * hqos->port.n_pipes_per_subport + pipe_id;
u32 profile_id = hqos->pipe_map[pos];
rv =
rte_sched_pipe_config (xd->hqos_ht->hqos, subport_id, pipe_id,
profile_id);
if (rv)
return clib_error_return (0,
"HQoS%u subport %u pipe %u: rte_sched_pipe_config err (%d)",
xd->port_id, subport_id, pipe_id, rv);
}
}
/* Set up per-thread device data for the I/O TX thread */
xd->hqos_ht->hqos_burst_enq = hqos->burst_enq;
xd->hqos_ht->hqos_burst_deq = hqos->burst_deq;
vec_validate (xd->hqos_ht->pkts_enq, 2 * hqos->burst_enq - 1);
vec_validate (xd->hqos_ht->pkts_deq, hqos->burst_deq - 1);
xd->hqos_ht->pkts_enq_len = 0;
xd->hqos_ht->swq_pos = 0;
xd->hqos_ht->flush_count = 0;
/* Set up per-thread device data for each worker thread */
for (i = 0; i < worker_thread_count + 1; i++)
{
u32 tid;
if (i)
tid = worker_thread_first + (i - 1);
else
tid = i;
xd->hqos_wt[tid].swq = xd->hqos_ht->swq[i];
xd->hqos_wt[tid].hqos_field0_slabpos = hqos->pktfield0_slabpos;
xd->hqos_wt[tid].hqos_field0_slabmask = hqos->pktfield0_slabmask;
xd->hqos_wt[tid].hqos_field0_slabshr =
count_trailing_zeros (hqos->pktfield0_slabmask);
xd->hqos_wt[tid].hqos_field1_slabpos = hqos->pktfield1_slabpos;
xd->hqos_wt[tid].hqos_field1_slabmask = hqos->pktfield1_slabmask;
xd->hqos_wt[tid].hqos_field1_slabshr =
count_trailing_zeros (hqos->pktfield1_slabmask);
xd->hqos_wt[tid].hqos_field2_slabpos = hqos->pktfield2_slabpos;
xd->hqos_wt[tid].hqos_field2_slabmask = hqos->pktfield2_slabmask;
xd->hqos_wt[tid].hqos_field2_slabshr =
count_trailing_zeros (hqos->pktfield2_slabmask);
memcpy (xd->hqos_wt[tid].hqos_tc_table, hqos->tc_table,
sizeof (hqos->tc_table));
}
return 0;
}
/***
*
* HQoS run-time
*
***/
/*
* dpdk_hqos_thread - Contains the main loop of an HQoS thread.
*
* w
* Information for the current thread
*/
static_always_inline void
dpdk_hqos_thread_internal_hqos_dbg_bypass (vlib_main_t * vm)
{
dpdk_main_t *dm = &dpdk_main;
u32 thread_index = vm->thread_index;
u32 dev_pos;
dev_pos = 0;
while (1)
{
vlib_worker_thread_barrier_check ();
u32 n_devs = vec_len (dm->devices_by_hqos_cpu[thread_index]);
if (dev_pos >= n_devs)
dev_pos = 0;
dpdk_device_and_queue_t *dq =
vec_elt_at_index (dm->devices_by_hqos_cpu[thread_index], dev_pos);
dpdk_device_t *xd = vec_elt_at_index (dm->devices, dq->device);
dpdk_device_hqos_per_hqos_thread_t *hqos = xd->hqos_ht;
u32 device_index = xd->port_id;
u16 queue_id = dq->queue_id;
struct rte_mbuf **pkts_enq = hqos->pkts_enq;
u32 pkts_enq_len = hqos->pkts_enq_len;
u32 swq_pos = hqos->swq_pos;
u32 n_swq = vec_len (hqos->swq), i;
u32 flush_count = hqos->flush_count;
for (i = 0; i < n_swq; i++)
{
/* Get current SWQ for this device */
struct rte_ring *swq = hqos->swq[swq_pos];
/* Read SWQ burst to packet buffer of this device */
pkts_enq_len += rte_ring_sc_dequeue_burst (swq,
(void **)
&pkts_enq[pkts_enq_len],
hqos->hqos_burst_enq, 0);
/* Get next SWQ for this device */
swq_pos++;
if (swq_pos >= n_swq)
swq_pos = 0;
hqos->swq_pos = swq_pos;
/* HWQ TX enqueue when burst available */
if (pkts_enq_len >= hqos->hqos_burst_enq)
{
u32 n_pkts = rte_eth_tx_burst (device_index,
(uint16_t) queue_id,
pkts_enq,
(uint16_t) pkts_enq_len);
for (; n_pkts < pkts_enq_len; n_pkts++)
rte_pktmbuf_free (pkts_enq[n_pkts]);
pkts_enq_len = 0;
flush_count = 0;
break;
}
}
if (pkts_enq_len)
{
flush_count++;
if (PREDICT_FALSE (flush_count == HQOS_FLUSH_COUNT_THRESHOLD))
{
rte_sched_port_enqueue (hqos->hqos, pkts_enq, pkts_enq_len);
pkts_enq_len = 0;
flush_count = 0;
}
}
hqos->pkts_enq_len = pkts_enq_len;
hqos->flush_count = flush_count;
/* Advance to next device */
dev_pos++;
}
}
static_always_inline void
dpdk_hqos_thread_internal (vlib_main_t * vm)
{
dpdk_main_t *dm = &dpdk_main;
u32 thread_index = vm->thread_index;
u32 dev_pos;
dev_pos = 0;
while (1)
{
vlib_worker_thread_barrier_check ();
u32 n_devs = vec_len (dm->devices_by_hqos_cpu[thread_index]);
if (PREDICT_FALSE (n_devs == 0))
{
dev_pos = 0;
continue;
}
if (dev_pos >= n_devs)
dev_pos = 0;
dpdk_device_and_queue_t *dq =
vec_elt_at_index (dm->devices_by_hqos_cpu[thread_index], dev_pos);
dpdk_device_t *xd = vec_elt_at_index (dm->devices, dq->device);
dpdk_device_hqos_per_hqos_thread_t *hqos = xd->hqos_ht;
u32 device_index = xd->port_id;
u16 queue_id = dq->queue_id;
struct rte_mbuf **pkts_enq = hqos->pkts_enq;
struct rte_mbuf **pkts_deq = hqos->pkts_deq;
u32 pkts_enq_len = hqos->pkts_enq_len;
u32 swq_pos = hqos->swq_pos;
u32 n_swq = vec_len (hqos->swq), i;
u32 flush_count = hqos->flush_count;
/*
* SWQ dequeue and HQoS enqueue for current device
*/
for (i = 0; i < n_swq; i++)
{
/* Get current SWQ for this device */
struct rte_ring *swq = hqos->swq[swq_pos];
/* Read SWQ burst to packet buffer of this device */
pkts_enq_len += rte_ring_sc_dequeue_burst (swq,
(void **)
&pkts_enq[pkts_enq_len],
hqos->hqos_burst_enq, 0);
/* Get next SWQ for this device */
swq_pos++;
if (swq_pos >= n_swq)
swq_pos = 0;
hqos->swq_pos = swq_pos;
/* HQoS enqueue when burst available */
if (pkts_enq_len >= hqos->hqos_burst_enq)
{
rte_sched_port_enqueue (hqos->hqos, pkts_enq, pkts_enq_len);
pkts_enq_len = 0;
flush_count = 0;
break;
}
}
if (pkts_enq_len)
{
flush_count++;
if (PREDICT_FALSE (flush_count == HQOS_FLUSH_COUNT_THRESHOLD))
{
rte_sched_port_enqueue (hqos->hqos, pkts_enq, pkts_enq_len);
pkts_enq_len = 0;
flush_count = 0;
}
}
hqos->pkts_enq_len = pkts_enq_len;
hqos->flush_count = flush_count;
/*
* HQoS dequeue and HWQ TX enqueue for current device
*/
{
u32 pkts_deq_len, n_pkts;
pkts_deq_len = rte_sched_port_dequeue (hqos->hqos,
pkts_deq,
hqos->hqos_burst_deq);
for (n_pkts = 0; n_pkts < pkts_deq_len;)
n_pkts += rte_eth_tx_burst (device_index,
(uint16_t) queue_id,
&pkts_deq[n_pkts],
(uint16_t) (pkts_deq_len - n_pkts));
}
/* Advance to next device */
dev_pos++;
}
}
void
dpdk_hqos_thread (vlib_worker_thread_t * w)
{
vlib_main_t *vm;
vlib_thread_main_t *tm = vlib_get_thread_main ();
dpdk_main_t *dm = &dpdk_main;
vm = vlib_get_main ();
ASSERT (vm->thread_index == vlib_get_thread_index ());
clib_time_init (&vm->clib_time);
clib_mem_set_heap (w->thread_mheap);
/* Wait until the dpdk init sequence is complete */
while (tm->worker_thread_release == 0)
vlib_worker_thread_barrier_check ();
if (vec_len (dm->devices_by_hqos_cpu[vm->thread_index]) == 0)
return
clib_error
("current I/O TX thread does not have any devices assigned to it");
if (DPDK_HQOS_DBG_BYPASS)
dpdk_hqos_thread_internal_hqos_dbg_bypass (vm);
else
dpdk_hqos_thread_internal (vm);
}
void
dpdk_hqos_thread_fn (void *arg)
{
vlib_worker_thread_t *w = (vlib_worker_thread_t *) arg;
vlib_worker_thread_init (w);
dpdk_hqos_thread (w);
}
/* *INDENT-OFF* */
VLIB_REGISTER_THREAD (hqos_thread_reg, static) =
{
.name = "hqos-threads",
.short_name = "hqos-threads",
.function = dpdk_hqos_thread_fn,
};
/* *INDENT-ON* */
/*
* HQoS run-time code to be called by the worker threads
*/
#define BITFIELD(byte_array, slab_pos, slab_mask, slab_shr) \
({ \
u64 slab = *((u64 *) &byte_array[slab_pos]); \
u64 val = (rte_be_to_cpu_64(slab) & slab_mask) >> slab_shr; \
val; \
})
#define RTE_SCHED_PORT_HIERARCHY(subport, pipe, traffic_class, queue, color) \
((((u64) (queue)) & 0x3) | \
((((u64) (traffic_class)) & 0x3) << 2) | \
((((u64) (color)) & 0x3) << 4) | \
((((u64) (subport)) & 0xFFFF) << 16) | \
((((u64) (pipe)) & 0xFFFFFFFF) << 32))
void
dpdk_hqos_metadata_set (dpdk_device_hqos_per_worker_thread_t * hqos,
struct rte_mbuf **pkts, u32 n_pkts)
{
u32 i;
for (i = 0; i < (n_pkts & (~0x3)); i += 4)
{
struct rte_mbuf *pkt0 = pkts[i];
struct rte_mbuf *pkt1 = pkts[i + 1];
struct rte_mbuf *pkt2 = pkts[i + 2];
struct rte_mbuf *pkt3 = pkts[i + 3];
u8 *pkt0_data = rte_pktmbuf_mtod (pkt0, u8 *);
u8 *pkt1_data = rte_pktmbuf_mtod (pkt1, u8 *);
u8 *pkt2_data = rte_pktmbuf_mtod (pkt2, u8 *);
u8 *pkt3_data = rte_pktmbuf_mtod (pkt3, u8 *);
u64 pkt0_subport = BITFIELD (pkt0_data, hqos->hqos_field0_slabpos,
hqos->hqos_field0_slabmask,
hqos->hqos_field0_slabshr);
u64 pkt0_pipe = BITFIELD (pkt0_data, hqos->hqos_field1_slabpos,
hqos->hqos_field1_slabmask,
hqos->hqos_field1_slabshr);
u64 pkt0_dscp = BITFIELD (pkt0_data, hqos->hqos_field2_slabpos,
hqos->hqos_field2_slabmask,
hqos->hqos_field2_slabshr);
u32 pkt0_tc = hqos->hqos_tc_table[pkt0_dscp & 0x3F] >> 2;
u32 pkt0_tc_q = hqos->hqos_tc_table[pkt0_dscp & 0x3F] & 0x3;
u64 pkt1_subport = BITFIELD (pkt1_data, hqos->hqos_field0_slabpos,
hqos->hqos_field0_slabmask,
hqos->hqos_field0_slabshr);
u64 pkt1_pipe = BITFIELD (pkt1_data, hqos->hqos_field1_slabpos,
hqos->hqos_field1_slabmask,
hqos->hqos_field1_slabshr);
u64 pkt1_dscp = BITFIELD (pkt1_data, hqos->hqos_field2_slabpos,
hqos->hqos_field2_slabmask,
hqos->hqos_field2_slabshr);
u32 pkt1_tc = hqos->hqos_tc_table[pkt1_dscp & 0x3F] >> 2;
u32 pkt1_tc_q = hqos->hqos_tc_table[pkt1_dscp & 0x3F] & 0x3;
u64 pkt2_subport = BITFIELD (pkt2_data, hqos->hqos_field0_slabpos,
hqos->hqos_field0_slabmask,
hqos->hqos_field0_slabshr);
u64 pkt2_pipe = BITFIELD (pkt2_data, hqos->hqos_field1_slabpos,
hqos->hqos_field1_slabmask,
hqos->hqos_field1_slabshr);
u64 pkt2_dscp = BITFIELD (pkt2_data, hqos->hqos_field2_slabpos,
hqos->hqos_field2_slabmask,
hqos->hqos_field2_slabshr);
u32 pkt2_tc = hqos->hqos_tc_table[pkt2_dscp & 0x3F] >> 2;
u32 pkt2_tc_q = hqos->hqos_tc_table[pkt2_dscp & 0x3F] & 0x3;
u64 pkt3_subport = BITFIELD (pkt3_data, hqos->hqos_field0_slabpos,
hqos->hqos_field0_slabmask,
hqos->hqos_field0_slabshr);
u64 pkt3_pipe = BITFIELD (pkt3_data, hqos->hqos_field1_slabpos,
hqos->hqos_field1_slabmask,
hqos->hqos_field1_slabshr);
u64 pkt3_dscp = BITFIELD (pkt3_data, hqos->hqos_field2_slabpos,
hqos->hqos_field2_slabmask,
hqos->hqos_field2_slabshr);
u32 pkt3_tc = hqos->hqos_tc_table[pkt3_dscp & 0x3F] >> 2;
u32 pkt3_tc_q = hqos->hqos_tc_table[pkt3_dscp & 0x3F] & 0x3;
u64 pkt0_sched = RTE_SCHED_PORT_HIERARCHY (pkt0_subport,
pkt0_pipe,
pkt0_tc,
pkt0_tc_q,
0);
u64 pkt1_sched = RTE_SCHED_PORT_HIERARCHY (pkt1_subport,
pkt1_pipe,
pkt1_tc,
pkt1_tc_q,
0);
u64 pkt2_sched = RTE_SCHED_PORT_HIERARCHY (pkt2_subport,
pkt2_pipe,
pkt2_tc,
pkt2_tc_q,
0);
u64 pkt3_sched = RTE_SCHED_PORT_HIERARCHY (pkt3_subport,
pkt3_pipe,
pkt3_tc,
pkt3_tc_q,
0);
pkt0->hash.sched.lo = pkt0_sched & 0xFFFFFFFF;
pkt0->hash.sched.hi = pkt0_sched >> 32;
pkt1->hash.sched.lo = pkt1_sched & 0xFFFFFFFF;
pkt1->hash.sched.hi = pkt1_sched >> 32;
pkt2->hash.sched.lo = pkt2_sched & 0xFFFFFFFF;
pkt2->hash.sched.hi = pkt2_sched >> 32;
pkt3->hash.sched.lo = pkt3_sched & 0xFFFFFFFF;
pkt3->hash.sched.hi = pkt3_sched >> 32;
}
for (; i < n_pkts; i++)
{
struct rte_mbuf *pkt = pkts[i];
u8 *pkt_data = rte_pktmbuf_mtod (pkt, u8 *);
u64 pkt_subport = BITFIELD (pkt_data, hqos->hqos_field0_slabpos,
hqos->hqos_field0_slabmask,
hqos->hqos_field0_slabshr);
u64 pkt_pipe = BITFIELD (pkt_data, hqos->hqos_field1_slabpos,
hqos->hqos_field1_slabmask,
hqos->hqos_field1_slabshr);
u64 pkt_dscp = BITFIELD (pkt_data, hqos->hqos_field2_slabpos,
hqos->hqos_field2_slabmask,
hqos->hqos_field2_slabshr);
u32 pkt_tc = hqos->hqos_tc_table[pkt_dscp & 0x3F] >> 2;
u32 pkt_tc_q = hqos->hqos_tc_table[pkt_dscp & 0x3F] & 0x3;
u64 pkt_sched = RTE_SCHED_PORT_HIERARCHY (pkt_subport,
pkt_pipe,
pkt_tc,
pkt_tc_q,
0);
pkt->hash.sched.lo = pkt_sched & 0xFFFFFFFF;
pkt->hash.sched.hi = pkt_sched >> 32;
}
}
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/