Files
vpp/src/plugins/avf/input.c
Damjan Marion c3148b1be8 misc: remove GNU Indent directives
Type: refactor
Change-Id: I5235bf3e9aff58af6ba2c14e8c6529c4fc9ec86c
Signed-off-by: Damjan Marion <damarion@cisco.com>
2024-03-12 19:29:56 +00:00

589 lines
16 KiB
C

/*
*------------------------------------------------------------------
* Copyright (c) 2018 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*------------------------------------------------------------------
*/
#include <vlib/vlib.h>
#include <vlib/unix/unix.h>
#include <vlib/pci/pci.h>
#include <vnet/ethernet/ethernet.h>
#include <vnet/interface/rx_queue_funcs.h>
#include <avf/avf.h>
#define foreach_avf_input_error \
_(BUFFER_ALLOC, "buffer alloc error")
typedef enum
{
#define _(f,s) AVF_INPUT_ERROR_##f,
foreach_avf_input_error
#undef _
AVF_INPUT_N_ERROR,
} avf_input_error_t;
static __clib_unused char *avf_input_error_strings[] = {
#define _(n,s) s,
foreach_avf_input_error
#undef _
};
#define AVF_INPUT_REFILL_TRESHOLD 32
static_always_inline void
avf_rx_desc_write (avf_rx_desc_t * d, u64 addr)
{
#ifdef CLIB_HAVE_VEC256
u64x4 v = { addr, 0, 0, 0 };
u64x4_store_unaligned (v, (void *) d);
#else
d->qword[0] = addr;
d->qword[1] = 0;
#endif
}
static_always_inline void
avf_rxq_refill (vlib_main_t * vm, vlib_node_runtime_t * node, avf_rxq_t * rxq,
int use_va_dma)
{
u16 n_refill, mask, n_alloc, slot, size;
vlib_buffer_t *b[8];
avf_rx_desc_t *d, *first_d;
void *p[8];
size = rxq->size;
mask = size - 1;
n_refill = mask - rxq->n_enqueued;
if (PREDICT_TRUE (n_refill <= AVF_INPUT_REFILL_TRESHOLD))
return;
slot = (rxq->next - n_refill - 1) & mask;
n_refill &= ~7; /* round to 8 */
n_alloc =
vlib_buffer_alloc_to_ring_from_pool (vm, rxq->bufs, slot, size, n_refill,
rxq->buffer_pool_index);
if (PREDICT_FALSE (n_alloc != n_refill))
{
vlib_error_count (vm, node->node_index,
AVF_INPUT_ERROR_BUFFER_ALLOC, 1);
if (n_alloc)
vlib_buffer_free_from_ring (vm, rxq->bufs, slot, size, n_alloc);
return;
}
rxq->n_enqueued += n_alloc;
first_d = rxq->descs;
ASSERT (slot % 8 == 0);
while (n_alloc >= 8)
{
d = first_d + slot;
if (use_va_dma)
{
vlib_get_buffers_with_offset (vm, rxq->bufs + slot, p, 8,
sizeof (vlib_buffer_t));
avf_rx_desc_write (d + 0, pointer_to_uword (p[0]));
avf_rx_desc_write (d + 1, pointer_to_uword (p[1]));
avf_rx_desc_write (d + 2, pointer_to_uword (p[2]));
avf_rx_desc_write (d + 3, pointer_to_uword (p[3]));
avf_rx_desc_write (d + 4, pointer_to_uword (p[4]));
avf_rx_desc_write (d + 5, pointer_to_uword (p[5]));
avf_rx_desc_write (d + 6, pointer_to_uword (p[6]));
avf_rx_desc_write (d + 7, pointer_to_uword (p[7]));
}
else
{
vlib_get_buffers (vm, rxq->bufs + slot, b, 8);
avf_rx_desc_write (d + 0, vlib_buffer_get_pa (vm, b[0]));
avf_rx_desc_write (d + 1, vlib_buffer_get_pa (vm, b[1]));
avf_rx_desc_write (d + 2, vlib_buffer_get_pa (vm, b[2]));
avf_rx_desc_write (d + 3, vlib_buffer_get_pa (vm, b[3]));
avf_rx_desc_write (d + 4, vlib_buffer_get_pa (vm, b[4]));
avf_rx_desc_write (d + 5, vlib_buffer_get_pa (vm, b[5]));
avf_rx_desc_write (d + 6, vlib_buffer_get_pa (vm, b[6]));
avf_rx_desc_write (d + 7, vlib_buffer_get_pa (vm, b[7]));
}
/* next */
slot = (slot + 8) & mask;
n_alloc -= 8;
}
/* RXQ can be smaller than 256 packets, especially if jumbo. */
rxq->descs[slot].qword[1] = 0;
avf_tail_write (rxq->qrx_tail, slot);
}
static_always_inline uword
avf_rx_attach_tail (vlib_main_t * vm, vlib_buffer_t * bt, vlib_buffer_t * b,
u64 qw1, avf_rx_tail_t * t)
{
vlib_buffer_t *hb = b;
u32 tlnifb = 0, i = 0;
if (qw1 & AVF_RXD_STATUS_EOP)
return 0;
while ((qw1 & AVF_RXD_STATUS_EOP) == 0)
{
ASSERT (i < AVF_RX_MAX_DESC_IN_CHAIN - 1);
ASSERT (qw1 & AVF_RXD_STATUS_DD);
qw1 = t->qw1s[i];
b->next_buffer = t->buffers[i];
b->flags |= VLIB_BUFFER_NEXT_PRESENT;
b = vlib_get_buffer (vm, b->next_buffer);
vlib_buffer_copy_template (b, bt);
tlnifb += b->current_length = qw1 >> AVF_RXD_LEN_SHIFT;
i++;
}
hb->total_length_not_including_first_buffer = tlnifb;
hb->flags |= VLIB_BUFFER_TOTAL_LENGTH_VALID;
return tlnifb;
}
static_always_inline void
avf_process_flow_offload (avf_device_t *ad, avf_per_thread_data_t *ptd,
uword n_rx_packets)
{
uword n;
avf_flow_lookup_entry_t *fle;
for (n = 0; n < n_rx_packets; n++)
{
if ((ptd->qw1s[n] & AVF_RXD_STATUS_FLM) == 0)
continue;
fle = pool_elt_at_index (ad->flow_lookup_entries, ptd->flow_ids[n]);
if (fle->next_index != (u16) ~0)
{
ptd->next[n] = fle->next_index;
}
if (fle->flow_id != ~0)
{
ptd->bufs[n]->flow_id = fle->flow_id;
}
if (fle->buffer_advance != ~0)
{
vlib_buffer_advance (ptd->bufs[n], fle->buffer_advance);
}
}
}
static_always_inline uword
avf_process_rx_burst (vlib_main_t * vm, vlib_node_runtime_t * node,
avf_per_thread_data_t * ptd, u32 n_left,
int maybe_multiseg)
{
vlib_buffer_t bt;
vlib_buffer_t **b = ptd->bufs;
u64 *qw1 = ptd->qw1s;
avf_rx_tail_t *tail = ptd->tails;
uword n_rx_bytes = 0;
/* copy template into local variable - will save per packet load */
vlib_buffer_copy_template (&bt, &ptd->buffer_template);
while (n_left >= 4)
{
if (n_left >= 12)
{
vlib_prefetch_buffer_header (b[8], LOAD);
vlib_prefetch_buffer_header (b[9], LOAD);
vlib_prefetch_buffer_header (b[10], LOAD);
vlib_prefetch_buffer_header (b[11], LOAD);
}
vlib_buffer_copy_template (b[0], &bt);
vlib_buffer_copy_template (b[1], &bt);
vlib_buffer_copy_template (b[2], &bt);
vlib_buffer_copy_template (b[3], &bt);
n_rx_bytes += b[0]->current_length = qw1[0] >> AVF_RXD_LEN_SHIFT;
n_rx_bytes += b[1]->current_length = qw1[1] >> AVF_RXD_LEN_SHIFT;
n_rx_bytes += b[2]->current_length = qw1[2] >> AVF_RXD_LEN_SHIFT;
n_rx_bytes += b[3]->current_length = qw1[3] >> AVF_RXD_LEN_SHIFT;
if (maybe_multiseg)
{
n_rx_bytes += avf_rx_attach_tail (vm, &bt, b[0], qw1[0], tail + 0);
n_rx_bytes += avf_rx_attach_tail (vm, &bt, b[1], qw1[1], tail + 1);
n_rx_bytes += avf_rx_attach_tail (vm, &bt, b[2], qw1[2], tail + 2);
n_rx_bytes += avf_rx_attach_tail (vm, &bt, b[3], qw1[3], tail + 3);
}
/* next */
qw1 += 4;
tail += 4;
b += 4;
n_left -= 4;
}
while (n_left)
{
vlib_buffer_copy_template (b[0], &bt);
n_rx_bytes += b[0]->current_length = qw1[0] >> AVF_RXD_LEN_SHIFT;
if (maybe_multiseg)
n_rx_bytes += avf_rx_attach_tail (vm, &bt, b[0], qw1[0], tail + 0);
/* next */
qw1 += 1;
tail += 1;
b += 1;
n_left -= 1;
}
return n_rx_bytes;
}
static_always_inline uword
avf_device_input_inline (vlib_main_t *vm, vlib_node_runtime_t *node,
vlib_frame_t *frame, avf_device_t *ad, u16 qid,
int with_flows)
{
avf_main_t *am = &avf_main;
vnet_main_t *vnm = vnet_get_main ();
u32 thr_idx = vlib_get_thread_index ();
avf_per_thread_data_t *ptd =
vec_elt_at_index (am->per_thread_data, thr_idx);
avf_rxq_t *rxq = vec_elt_at_index (ad->rxqs, qid);
u32 n_trace, n_rx_packets = 0, n_rx_bytes = 0;
u16 n_tail_desc = 0;
u64 or_qw1 = 0;
u32 *bi, *to_next, n_left_to_next;
vlib_buffer_t *bt = &ptd->buffer_template;
u32 next_index = VNET_DEVICE_INPUT_NEXT_ETHERNET_INPUT;
u16 next = rxq->next;
u16 size = rxq->size;
u16 mask = size - 1;
avf_rx_desc_t *d, *fd = rxq->descs;
#ifdef CLIB_HAVE_VEC256
u64x4 q1x4, or_q1x4 = { 0 };
u32x4 fdidx4;
u64x4 dd_eop_mask4 = u64x4_splat (AVF_RXD_STATUS_DD | AVF_RXD_STATUS_EOP);
#elif defined(CLIB_HAVE_VEC128)
u32x4 q1x4_lo, q1x4_hi, or_q1x4 = { 0 };
u32x4 fdidx4;
u32x4 dd_eop_mask4 = u32x4_splat (AVF_RXD_STATUS_DD | AVF_RXD_STATUS_EOP);
#endif
int single_next = 1;
/* is there anything on the ring */
d = fd + next;
if ((d->qword[1] & AVF_RXD_STATUS_DD) == 0)
goto done;
if (PREDICT_FALSE (ad->per_interface_next_index != ~0))
next_index = ad->per_interface_next_index;
if (PREDICT_FALSE (vnet_device_input_have_features (ad->sw_if_index)))
vnet_feature_start_device_input (ad->sw_if_index, &next_index, bt);
vlib_get_new_next_frame (vm, node, next_index, to_next, n_left_to_next);
/* fetch up to AVF_RX_VECTOR_SZ from the rx ring, unflatten them and
copy needed data from descriptor to rx vector */
bi = to_next;
while (n_rx_packets < AVF_RX_VECTOR_SZ)
{
if (next + 11 < size)
{
int stride = 8;
clib_prefetch_load ((void *) (fd + (next + stride)));
clib_prefetch_load ((void *) (fd + (next + stride + 1)));
clib_prefetch_load ((void *) (fd + (next + stride + 2)));
clib_prefetch_load ((void *) (fd + (next + stride + 3)));
}
#ifdef CLIB_HAVE_VEC256
if (n_rx_packets >= AVF_RX_VECTOR_SZ - 4 || next >= size - 4)
goto one_by_one;
q1x4 = u64x4_gather ((void *) &d[0].qword[1], (void *) &d[1].qword[1],
(void *) &d[2].qword[1], (void *) &d[3].qword[1]);
/* not all packets are ready or at least one of them is chained */
if (!u64x4_is_equal (q1x4 & dd_eop_mask4, dd_eop_mask4))
goto one_by_one;
or_q1x4 |= q1x4;
u64x4_store_unaligned (q1x4, ptd->qw1s + n_rx_packets);
#elif defined(CLIB_HAVE_VEC128)
if (n_rx_packets >= AVF_RX_VECTOR_SZ - 4 || next >= size - 4)
goto one_by_one;
q1x4_lo =
u32x4_gather ((void *) &d[0].qword[1], (void *) &d[1].qword[1],
(void *) &d[2].qword[1], (void *) &d[3].qword[1]);
/* not all packets are ready or at least one of them is chained */
if (!u32x4_is_equal (q1x4_lo & dd_eop_mask4, dd_eop_mask4))
goto one_by_one;
q1x4_hi = u32x4_gather (
(void *) &d[0].qword[1] + 4, (void *) &d[1].qword[1] + 4,
(void *) &d[2].qword[1] + 4, (void *) &d[3].qword[1] + 4);
or_q1x4 |= q1x4_lo;
ptd->qw1s[n_rx_packets + 0] = (u64) q1x4_hi[0] << 32 | (u64) q1x4_lo[0];
ptd->qw1s[n_rx_packets + 1] = (u64) q1x4_hi[1] << 32 | (u64) q1x4_lo[1];
ptd->qw1s[n_rx_packets + 2] = (u64) q1x4_hi[2] << 32 | (u64) q1x4_lo[2];
ptd->qw1s[n_rx_packets + 3] = (u64) q1x4_hi[3] << 32 | (u64) q1x4_lo[3];
#endif
#if defined(CLIB_HAVE_VEC256) || defined(CLIB_HAVE_VEC128)
if (with_flows)
{
fdidx4 = u32x4_gather (
(void *) &d[0].fdid_flex_hi, (void *) &d[1].fdid_flex_hi,
(void *) &d[2].fdid_flex_hi, (void *) &d[3].fdid_flex_hi);
u32x4_store_unaligned (fdidx4, ptd->flow_ids + n_rx_packets);
}
vlib_buffer_copy_indices (bi, rxq->bufs + next, 4);
/* next */
next = (next + 4) & mask;
d = fd + next;
n_rx_packets += 4;
bi += 4;
continue;
one_by_one:
#endif
clib_prefetch_load ((void *) (fd + ((next + 8) & mask)));
if (avf_rxd_is_not_dd (d))
break;
bi[0] = rxq->bufs[next];
/* deal with chained buffers */
if (PREDICT_FALSE (avf_rxd_is_not_eop (d)))
{
u16 tail_desc = 0;
u16 tail_next = next;
avf_rx_tail_t *tail = ptd->tails + n_rx_packets;
avf_rx_desc_t *td;
do
{
tail_next = (tail_next + 1) & mask;
td = fd + tail_next;
/* bail out in case of incomplete transaction */
if (avf_rxd_is_not_dd (td))
goto no_more_desc;
or_qw1 |= tail->qw1s[tail_desc] = td[0].qword[1];
tail->buffers[tail_desc] = rxq->bufs[tail_next];
tail_desc++;
}
while (avf_rxd_is_not_eop (td));
next = tail_next;
n_tail_desc += tail_desc;
}
or_qw1 |= ptd->qw1s[n_rx_packets] = d[0].qword[1];
if (PREDICT_FALSE (with_flows))
{
ptd->flow_ids[n_rx_packets] = d[0].fdid_flex_hi;
}
/* next */
next = (next + 1) & mask;
d = fd + next;
n_rx_packets++;
bi++;
}
no_more_desc:
if (n_rx_packets == 0)
goto done;
rxq->next = next;
rxq->n_enqueued -= n_rx_packets + n_tail_desc;
#if defined(CLIB_HAVE_VEC256) || defined(CLIB_HAVE_VEC128)
or_qw1 |= or_q1x4[0] | or_q1x4[1] | or_q1x4[2] | or_q1x4[3];
#endif
vlib_get_buffers (vm, to_next, ptd->bufs, n_rx_packets);
vnet_buffer (bt)->sw_if_index[VLIB_RX] = ad->sw_if_index;
vnet_buffer (bt)->sw_if_index[VLIB_TX] = ~0;
bt->buffer_pool_index = rxq->buffer_pool_index;
bt->ref_count = 1;
if (n_tail_desc)
n_rx_bytes = avf_process_rx_burst (vm, node, ptd, n_rx_packets, 1);
else
n_rx_bytes = avf_process_rx_burst (vm, node, ptd, n_rx_packets, 0);
/* the MARKed packets may have different next nodes */
if (PREDICT_FALSE (with_flows && (or_qw1 & AVF_RXD_STATUS_FLM)))
{
u32 n;
single_next = 0;
for (n = 0; n < n_rx_packets; n++)
ptd->next[n] = next_index;
avf_process_flow_offload (ad, ptd, n_rx_packets);
}
/* packet trace if enabled */
if (PREDICT_FALSE ((n_trace = vlib_get_trace_count (vm, node))))
{
u32 n_left = n_rx_packets;
u32 i, j;
u16 *next_indices = ptd->next;
i = 0;
while (n_trace && n_left)
{
vlib_buffer_t *b = ptd->bufs[i];
if (PREDICT_FALSE (single_next == 0))
next_index = next_indices[0];
if (PREDICT_TRUE
(vlib_trace_buffer
(vm, node, next_index, b, /* follow_chain */ 0)))
{
avf_input_trace_t *tr =
vlib_add_trace (vm, node, b, sizeof (*tr));
tr->next_index = next_index;
tr->qid = qid;
tr->hw_if_index = ad->hw_if_index;
tr->qw1s[0] = ptd->qw1s[i];
tr->flow_id =
(tr->qw1s[0] & AVF_RXD_STATUS_FLM) ? ptd->flow_ids[i] : 0;
for (j = 1; j < AVF_RX_MAX_DESC_IN_CHAIN; j++)
tr->qw1s[j] = ptd->tails[i].qw1s[j - 1];
n_trace--;
}
/* next */
n_left--;
i++;
next_indices++;
}
vlib_set_trace_count (vm, node, n_trace);
}
/* enqueu the packets to the next nodes */
if (PREDICT_FALSE (with_flows && (or_qw1 & AVF_RXD_STATUS_FLM)))
{
/* release next node's frame vector, in this case we use
vlib_buffer_enqueue_to_next to place the packets
*/
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
/* enqueue buffers to the next node */
vlib_buffer_enqueue_to_next (vm, node, to_next, ptd->next, n_rx_packets);
}
else
{
if (PREDICT_TRUE (next_index == VNET_DEVICE_INPUT_NEXT_ETHERNET_INPUT))
{
vlib_next_frame_t *nf;
vlib_frame_t *f;
ethernet_input_frame_t *ef;
nf = vlib_node_runtime_get_next_frame (vm, node, next_index);
f = vlib_get_frame (vm, nf->frame);
f->flags = ETH_INPUT_FRAME_F_SINGLE_SW_IF_IDX;
ef = vlib_frame_scalar_args (f);
ef->sw_if_index = ad->sw_if_index;
ef->hw_if_index = ad->hw_if_index;
if ((or_qw1 & AVF_RXD_ERROR_IPE) == 0)
f->flags |= ETH_INPUT_FRAME_F_IP4_CKSUM_OK;
vlib_frame_no_append (f);
}
n_left_to_next -= n_rx_packets;
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
vlib_increment_combined_counter (vnm->interface_main.combined_sw_if_counters
+ VNET_INTERFACE_COUNTER_RX, thr_idx,
ad->hw_if_index, n_rx_packets, n_rx_bytes);
done:
/* refill rx ring */
if (ad->flags & AVF_DEVICE_F_VA_DMA)
avf_rxq_refill (vm, node, rxq, 1 /* use_va_dma */ );
else
avf_rxq_refill (vm, node, rxq, 0 /* use_va_dma */ );
return n_rx_packets;
}
VLIB_NODE_FN (avf_input_node) (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * frame)
{
u32 n_rx = 0;
vnet_hw_if_rxq_poll_vector_t *pv;
pv = vnet_hw_if_get_rxq_poll_vector (vm, node);
for (int i = 0; i < vec_len (pv); i++)
{
avf_device_t *ad = avf_get_device (pv[i].dev_instance);
if ((ad->flags & AVF_DEVICE_F_ADMIN_UP) == 0)
continue;
if (PREDICT_FALSE (ad->flags & AVF_DEVICE_F_RX_FLOW_OFFLOAD))
n_rx +=
avf_device_input_inline (vm, node, frame, ad, pv[i].queue_id, 1);
else
n_rx +=
avf_device_input_inline (vm, node, frame, ad, pv[i].queue_id, 0);
}
return n_rx;
}
VLIB_REGISTER_NODE (avf_input_node) = {
.name = "avf-input",
.sibling_of = "device-input",
.format_trace = format_avf_input_trace,
.type = VLIB_NODE_TYPE_INPUT,
.state = VLIB_NODE_STATE_DISABLED,
.n_errors = AVF_INPUT_N_ERROR,
.error_strings = avf_input_error_strings,
.flags = VLIB_NODE_FLAG_TRACE_SUPPORTED,
};
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/