blender/intern/cycles/render/object.cpp

940 lines
27 KiB
C++
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/object.h"
#include "device/device.h"
#include "render/camera.h"
#include "render/curves.h"
#include "render/hair.h"
#include "render/integrator.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/particles.h"
#include "render/scene.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_map.h"
#include "util/util_murmurhash.h"
#include "util/util_progress.h"
#include "util/util_set.h"
#include "util/util_vector.h"
#include "subd/subd_patch_table.h"
CCL_NAMESPACE_BEGIN
/* Global state of object transform update. */
struct UpdateObjectTransformState {
/* Global state used by device_update_object_transform().
* Common for both threaded and non-threaded update.
*/
/* Type of the motion required by the scene settings. */
Scene::MotionType need_motion;
/* Mapping from particle system to a index in packed particle array.
* Only used for read.
*/
map<ParticleSystem *, int> particle_offset;
/* Mesh area.
* Used to avoid calculation of mesh area multiple times. Used for both
* read and write. Acquire surface_area_lock to keep it all thread safe.
*/
map<Mesh *, float> surface_area_map;
/* Motion offsets for each object. */
array<uint> motion_offset;
/* Packed object arrays. Those will be filled in. */
uint *object_flag;
KernelObject *objects;
Transform *object_motion_pass;
DecomposedTransform *object_motion;
float *object_volume_step;
/* Flags which will be synchronized to Integrator. */
bool have_motion;
bool have_curves;
/* ** Scheduling queue. ** */
Scene *scene;
/* Some locks to keep everything thread-safe. */
thread_spin_lock queue_lock;
thread_spin_lock surface_area_lock;
/* First unused object index in the queue. */
int queue_start_object;
};
/* Object */
NODE_DEFINE(Object)
{
NodeType *type = NodeType::add("object", create);
SOCKET_NODE(geometry, "Geometry", &Geometry::node_base_type);
SOCKET_TRANSFORM(tfm, "Transform", transform_identity());
SOCKET_UINT(visibility, "Visibility", ~0);
SOCKET_COLOR(color, "Color", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_UINT(random_id, "Random ID", 0);
SOCKET_INT(pass_id, "Pass ID", 0);
SOCKET_BOOLEAN(use_holdout, "Use Holdout", false);
SOCKET_BOOLEAN(hide_on_missing_motion, "Hide on Missing Motion", false);
SOCKET_POINT(dupli_generated, "Dupli Generated", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_POINT2(dupli_uv, "Dupli UV", make_float2(0.0f, 0.0f));
SOCKET_TRANSFORM_ARRAY(motion, "Motion", array<Transform>());
SOCKET_BOOLEAN(is_shadow_catcher, "Shadow Catcher", false);
return type;
}
Object::Object() : Node(node_type)
{
particle_system = NULL;
particle_index = 0;
bounds = BoundBox::empty;
}
Object::~Object()
{
}
void Object::update_motion()
{
if (!use_motion()) {
return;
}
bool have_motion = false;
for (size_t i = 0; i < motion.size(); i++) {
if (motion[i] == transform_empty()) {
if (hide_on_missing_motion) {
/* Hide objects that have no valid previous or next
* transform, for example particle that stop existing. It
* would be better to handle this in the kernel and make
* objects invisible outside certain motion steps. */
tfm = transform_empty();
motion.clear();
return;
}
else {
/* Otherwise just copy center motion. */
motion[i] = tfm;
}
}
/* Test if any of the transforms are actually different. */
have_motion = have_motion || motion[i] != tfm;
}
/* Clear motion array if there is no actual motion. */
if (!have_motion) {
motion.clear();
}
}
void Object::compute_bounds(bool motion_blur)
{
BoundBox mbounds = geometry->bounds;
if (motion_blur && use_motion()) {
array<DecomposedTransform> decomp(motion.size());
transform_motion_decompose(decomp.data(), motion.data(), motion.size());
bounds = BoundBox::empty;
/* todo: this is really terrible. according to pbrt there is a better
* way to find this iteratively, but did not find implementation yet
* or try to implement myself */
for (float t = 0.0f; t < 1.0f; t += (1.0f / 128.0f)) {
Transform ttfm;
transform_motion_array_interpolate(&ttfm, decomp.data(), motion.size(), t);
bounds.grow(mbounds.transformed(&ttfm));
}
}
else {
/* No motion blur case. */
if (geometry->transform_applied) {
bounds = mbounds;
}
else {
bounds = mbounds.transformed(&tfm);
}
}
}
void Object::apply_transform(bool apply_to_motion)
{
if (!geometry || tfm == transform_identity())
return;
geometry->apply_transform(tfm, apply_to_motion);
/* we keep normals pointing in same direction on negative scale, notify
* geometry about this in it (re)calculates normals */
if (transform_negative_scale(tfm))
geometry->transform_negative_scaled = true;
if (bounds.valid()) {
geometry->compute_bounds();
compute_bounds(false);
}
/* tfm is not reset to identity, all code that uses it needs to check the
* transform_applied boolean */
}
void Object::tag_update(Scene *scene)
{
if (geometry) {
if (geometry->transform_applied)
geometry->need_update = true;
foreach (Shader *shader, geometry->used_shaders) {
if (shader->use_mis && shader->has_surface_emission)
scene->light_manager->need_update = true;
}
}
scene->camera->need_flags_update = true;
scene->curve_system_manager->need_update = true;
scene->geometry_manager->need_update = true;
scene->object_manager->need_update = true;
}
bool Object::use_motion() const
{
return (motion.size() > 1);
}
float Object::motion_time(int step) const
{
return (use_motion()) ? 2.0f * step / (motion.size() - 1) - 1.0f : 0.0f;
}
int Object::motion_step(float time) const
{
if (use_motion()) {
for (size_t step = 0; step < motion.size(); step++) {
if (time == motion_time(step)) {
return step;
}
}
}
return -1;
}
bool Object::is_traceable() const
{
/* Mesh itself can be empty,can skip all such objects. */
if (!bounds.valid() || bounds.size() == make_float3(0.0f, 0.0f, 0.0f)) {
return false;
}
/* TODO(sergey): Check for mesh vertices/curves. visibility flags. */
return true;
}
uint Object::visibility_for_tracing() const
{
uint trace_visibility = visibility;
if (is_shadow_catcher) {
trace_visibility &= ~PATH_RAY_SHADOW_NON_CATCHER;
}
else {
trace_visibility &= ~PATH_RAY_SHADOW_CATCHER;
}
return trace_visibility;
}
float Object::compute_volume_step_size() const
{
if (geometry->type != Geometry::MESH) {
return FLT_MAX;
}
Mesh *mesh = static_cast<Mesh *>(geometry);
if (!mesh->has_volume) {
return FLT_MAX;
}
/* Compute step rate from shaders. */
float step_rate = FLT_MAX;
foreach (Shader *shader, mesh->used_shaders) {
if (shader->has_volume) {
if ((shader->heterogeneous_volume && shader->has_volume_spatial_varying) ||
(shader->has_volume_attribute_dependency)) {
step_rate = fminf(shader->volume_step_rate, step_rate);
}
}
}
if (step_rate == FLT_MAX) {
return FLT_MAX;
}
/* Compute step size from voxel grids. */
float step_size = FLT_MAX;
foreach (Attribute &attr, mesh->attributes.attributes) {
if (attr.element == ATTR_ELEMENT_VOXEL) {
ImageHandle &handle = attr.data_voxel();
const ImageMetaData &metadata = handle.metadata();
if (metadata.width == 0 || metadata.height == 0 || metadata.depth == 0) {
continue;
}
/* User specified step size. */
float voxel_step_size = mesh->volume_step_size;
if (voxel_step_size == 0.0f) {
/* Auto detect step size. */
float3 size = make_float3(
1.0f / metadata.width, 1.0f / metadata.height, 1.0f / metadata.depth);
/* Step size is transformed from voxel to world space. */
Transform voxel_tfm = tfm;
if (metadata.use_transform_3d) {
voxel_tfm = tfm * transform_inverse(metadata.transform_3d);
}
voxel_step_size = min3(fabs(transform_direction(&voxel_tfm, size)));
}
else if (mesh->volume_object_space) {
/* User specified step size in object space. */
float3 size = make_float3(voxel_step_size, voxel_step_size, voxel_step_size);
voxel_step_size = min3(fabs(transform_direction(&tfm, size)));
}
if (voxel_step_size > 0.0f) {
step_size = fminf(voxel_step_size, step_size);
}
}
}
if (step_size == FLT_MAX) {
/* Fall back to 1/10th of bounds for procedural volumes. */
step_size = 0.1f * average(bounds.size());
}
step_size *= step_rate;
return step_size;
}
int Object::get_device_index() const
{
return index;
}
/* Object Manager */
ObjectManager::ObjectManager()
{
need_update = true;
need_flags_update = true;
}
ObjectManager::~ObjectManager()
{
}
static float object_surface_area(UpdateObjectTransformState *state,
const Transform &tfm,
Geometry *geom)
{
if (geom->type != Geometry::MESH) {
return 0.0f;
}
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->has_volume) {
/* Volume density automatically adjust to object scale. */
if (mesh->volume_object_space) {
const float3 unit = normalize(make_float3(1.0f, 1.0f, 1.0f));
return 1.0f / len(transform_direction(&tfm, unit));
}
else {
return 1.0f;
}
}
/* Compute surface area. for uniform scale we can do avoid the many
* transform calls and share computation for instances.
*
* TODO(brecht): Correct for displacement, and move to a better place.
*/
float surface_area = 0.0f;
float uniform_scale;
if (transform_uniform_scale(tfm, uniform_scale)) {
map<Mesh *, float>::iterator it;
/* NOTE: This isn't fully optimal and could in theory lead to multiple
* threads calculating area of the same mesh in parallel. However, this
* also prevents suspending all the threads when some mesh's area is
* not yet known.
*/
state->surface_area_lock.lock();
it = state->surface_area_map.find(mesh);
state->surface_area_lock.unlock();
if (it == state->surface_area_map.end()) {
size_t num_triangles = mesh->num_triangles();
for (size_t j = 0; j < num_triangles; j++) {
Mesh::Triangle t = mesh->get_triangle(j);
float3 p1 = mesh->verts[t.v[0]];
float3 p2 = mesh->verts[t.v[1]];
float3 p3 = mesh->verts[t.v[2]];
surface_area += triangle_area(p1, p2, p3);
}
state->surface_area_lock.lock();
state->surface_area_map[mesh] = surface_area;
state->surface_area_lock.unlock();
}
else {
surface_area = it->second;
}
surface_area *= uniform_scale;
}
else {
size_t num_triangles = mesh->num_triangles();
for (size_t j = 0; j < num_triangles; j++) {
Mesh::Triangle t = mesh->get_triangle(j);
float3 p1 = transform_point(&tfm, mesh->verts[t.v[0]]);
float3 p2 = transform_point(&tfm, mesh->verts[t.v[1]]);
float3 p3 = transform_point(&tfm, mesh->verts[t.v[2]]);
surface_area += triangle_area(p1, p2, p3);
}
}
return surface_area;
}
void ObjectManager::device_update_object_transform(UpdateObjectTransformState *state, Object *ob)
{
KernelObject &kobject = state->objects[ob->index];
Transform *object_motion_pass = state->object_motion_pass;
Geometry *geom = ob->geometry;
uint flag = 0;
/* Compute transformations. */
Transform tfm = ob->tfm;
Transform itfm = transform_inverse(tfm);
float3 color = ob->color;
float pass_id = ob->pass_id;
float random_number = (float)ob->random_id * (1.0f / (float)0xFFFFFFFF);
int particle_index = (ob->particle_system) ?
ob->particle_index + state->particle_offset[ob->particle_system] :
0;
kobject.tfm = tfm;
kobject.itfm = itfm;
kobject.surface_area = object_surface_area(state, tfm, geom);
kobject.color[0] = color.x;
kobject.color[1] = color.y;
kobject.color[2] = color.z;
kobject.pass_id = pass_id;
kobject.random_number = random_number;
kobject.particle_index = particle_index;
kobject.motion_offset = 0;
if (geom->use_motion_blur) {
state->have_motion = true;
}
if (geom->type == Geometry::MESH) {
/* TODO: why only mesh? */
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)) {
flag |= SD_OBJECT_HAS_VERTEX_MOTION;
}
}
if (state->need_motion == Scene::MOTION_PASS) {
/* Clear motion array if there is no actual motion. */
ob->update_motion();
/* Compute motion transforms. */
Transform tfm_pre, tfm_post;
if (ob->use_motion()) {
tfm_pre = ob->motion[0];
tfm_post = ob->motion[ob->motion.size() - 1];
}
else {
tfm_pre = tfm;
tfm_post = tfm;
}
/* Motion transformations, is world/object space depending if mesh
* comes with deformed position in object space, or if we transform
* the shading point in world space. */
if (!(flag & SD_OBJECT_HAS_VERTEX_MOTION)) {
tfm_pre = tfm_pre * itfm;
tfm_post = tfm_post * itfm;
}
int motion_pass_offset = ob->index * OBJECT_MOTION_PASS_SIZE;
object_motion_pass[motion_pass_offset + 0] = tfm_pre;
object_motion_pass[motion_pass_offset + 1] = tfm_post;
}
else if (state->need_motion == Scene::MOTION_BLUR) {
if (ob->use_motion()) {
kobject.motion_offset = state->motion_offset[ob->index];
/* Decompose transforms for interpolation. */
DecomposedTransform *decomp = state->object_motion + kobject.motion_offset;
transform_motion_decompose(decomp, ob->motion.data(), ob->motion.size());
flag |= SD_OBJECT_MOTION;
state->have_motion = true;
}
}
/* Dupli object coords and motion info. */
kobject.dupli_generated[0] = ob->dupli_generated[0];
kobject.dupli_generated[1] = ob->dupli_generated[1];
kobject.dupli_generated[2] = ob->dupli_generated[2];
kobject.numkeys = (geom->type == Geometry::HAIR) ? static_cast<Hair *>(geom)->curve_keys.size() :
0;
kobject.dupli_uv[0] = ob->dupli_uv[0];
kobject.dupli_uv[1] = ob->dupli_uv[1];
int totalsteps = geom->motion_steps;
kobject.numsteps = (totalsteps - 1) / 2;
kobject.numverts = (geom->type == Geometry::MESH) ? static_cast<Mesh *>(geom)->verts.size() : 0;
kobject.patch_map_offset = 0;
kobject.attribute_map_offset = 0;
uint32_t hash_name = util_murmur_hash3(ob->name.c_str(), ob->name.length(), 0);
uint32_t hash_asset = util_murmur_hash3(ob->asset_name.c_str(), ob->asset_name.length(), 0);
kobject.cryptomatte_object = util_hash_to_float(hash_name);
kobject.cryptomatte_asset = util_hash_to_float(hash_asset);
/* Object flag. */
if (ob->use_holdout) {
flag |= SD_OBJECT_HOLDOUT_MASK;
}
state->object_flag[ob->index] = flag;
state->object_volume_step[ob->index] = FLT_MAX;
/* Have curves. */
if (geom->type == Geometry::HAIR) {
state->have_curves = true;
}
}
bool ObjectManager::device_update_object_transform_pop_work(UpdateObjectTransformState *state,
int *start_index,
int *num_objects)
{
/* Tweakable parameter, number of objects per chunk.
* Too small value will cause some extra overhead due to spin lock,
* too big value might not use all threads nicely.
*/
static const int OBJECTS_PER_TASK = 32;
bool have_work = false;
state->queue_lock.lock();
int num_scene_objects = state->scene->objects.size();
if (state->queue_start_object < num_scene_objects) {
int count = min(OBJECTS_PER_TASK, num_scene_objects - state->queue_start_object);
*start_index = state->queue_start_object;
*num_objects = count;
state->queue_start_object += count;
have_work = true;
}
state->queue_lock.unlock();
return have_work;
}
void ObjectManager::device_update_object_transform_task(UpdateObjectTransformState *state)
{
int start_index, num_objects;
while (device_update_object_transform_pop_work(state, &start_index, &num_objects)) {
for (int i = 0; i < num_objects; ++i) {
const int object_index = start_index + i;
Object *ob = state->scene->objects[object_index];
device_update_object_transform(state, ob);
}
}
}
void ObjectManager::device_update_transforms(DeviceScene *dscene, Scene *scene, Progress &progress)
{
UpdateObjectTransformState state;
state.need_motion = scene->need_motion();
state.have_motion = false;
state.have_curves = false;
state.scene = scene;
state.queue_start_object = 0;
state.objects = dscene->objects.alloc(scene->objects.size());
state.object_flag = dscene->object_flag.alloc(scene->objects.size());
state.object_volume_step = dscene->object_volume_step.alloc(scene->objects.size());
state.object_motion = NULL;
state.object_motion_pass = NULL;
if (state.need_motion == Scene::MOTION_PASS) {
state.object_motion_pass = dscene->object_motion_pass.alloc(OBJECT_MOTION_PASS_SIZE *
scene->objects.size());
}
else if (state.need_motion == Scene::MOTION_BLUR) {
/* Set object offsets into global object motion array. */
uint *motion_offsets = state.motion_offset.resize(scene->objects.size());
uint motion_offset = 0;
foreach (Object *ob, scene->objects) {
*motion_offsets = motion_offset;
motion_offsets++;
/* Clear motion array if there is no actual motion. */
ob->update_motion();
motion_offset += ob->motion.size();
}
state.object_motion = dscene->object_motion.alloc(motion_offset);
}
/* Particle system device offsets
* 0 is dummy particle, index starts at 1.
*/
int numparticles = 1;
foreach (ParticleSystem *psys, scene->particle_systems) {
state.particle_offset[psys] = numparticles;
numparticles += psys->particles.size();
}
/* NOTE: If it's just a handful of objects we deal with them in a single
* thread to avoid threading overhead. However, this threshold is might
* need some tweaks to make mid-complex scenes optimal.
*/
if (scene->objects.size() < 64) {
foreach (Object *ob, scene->objects) {
device_update_object_transform(&state, ob);
if (progress.get_cancel()) {
return;
}
}
}
else {
const int num_threads = TaskScheduler::num_threads();
TaskPool pool;
for (int i = 0; i < num_threads; ++i) {
pool.push(function_bind(&ObjectManager::device_update_object_transform_task, this, &state));
}
pool.wait_work();
if (progress.get_cancel()) {
return;
}
}
dscene->objects.copy_to_device();
if (state.need_motion == Scene::MOTION_PASS) {
dscene->object_motion_pass.copy_to_device();
}
else if (state.need_motion == Scene::MOTION_BLUR) {
dscene->object_motion.copy_to_device();
}
dscene->data.bvh.have_motion = state.have_motion;
dscene->data.bvh.have_curves = state.have_curves;
dscene->data.bvh.have_instancing = true;
}
void ObjectManager::device_update(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
if (!need_update)
return;
VLOG(1) << "Total " << scene->objects.size() << " objects.";
device_free(device, dscene);
if (scene->objects.size() == 0)
return;
/* Assign object IDs. */
int index = 0;
foreach (Object *object, scene->objects) {
object->index = index++;
}
/* set object transform matrices, before applying static transforms */
progress.set_status("Updating Objects", "Copying Transformations to device");
device_update_transforms(dscene, scene, progress);
if (progress.get_cancel())
return;
/* prepare for static BVH building */
/* todo: do before to support getting object level coords? */
if (scene->params.bvh_type == SceneParams::BVH_STATIC) {
progress.set_status("Updating Objects", "Applying Static Transformations");
apply_static_transforms(dscene, scene, progress);
}
}
void ObjectManager::device_update_flags(
Device *, DeviceScene *dscene, Scene *scene, Progress & /*progress*/, bool bounds_valid)
{
if (!need_update && !need_flags_update)
return;
need_update = false;
need_flags_update = false;
if (scene->objects.size() == 0)
return;
/* Object info flag. */
uint *object_flag = dscene->object_flag.data();
float *object_volume_step = dscene->object_volume_step.data();
/* Object volume intersection. */
vector<Object *> volume_objects;
bool has_volume_objects = false;
foreach (Object *object, scene->objects) {
if (object->geometry->has_volume) {
if (bounds_valid) {
volume_objects.push_back(object);
}
has_volume_objects = true;
object_volume_step[object->index] = object->compute_volume_step_size();
}
else {
object_volume_step[object->index] = FLT_MAX;
}
}
foreach (Object *object, scene->objects) {
if (object->geometry->has_volume) {
object_flag[object->index] |= SD_OBJECT_HAS_VOLUME;
object_flag[object->index] &= ~SD_OBJECT_HAS_VOLUME_ATTRIBUTES;
foreach (Attribute &attr, object->geometry->attributes.attributes) {
if (attr.element == ATTR_ELEMENT_VOXEL) {
object_flag[object->index] |= SD_OBJECT_HAS_VOLUME_ATTRIBUTES;
}
}
}
else {
object_flag[object->index] &= ~(SD_OBJECT_HAS_VOLUME | SD_OBJECT_HAS_VOLUME_ATTRIBUTES);
}
if (object->is_shadow_catcher) {
object_flag[object->index] |= SD_OBJECT_SHADOW_CATCHER;
}
else {
object_flag[object->index] &= ~SD_OBJECT_SHADOW_CATCHER;
}
if (bounds_valid) {
foreach (Object *volume_object, volume_objects) {
if (object == volume_object) {
continue;
}
if (object->bounds.intersects(volume_object->bounds)) {
object_flag[object->index] |= SD_OBJECT_INTERSECTS_VOLUME;
break;
}
}
}
else if (has_volume_objects) {
/* Not really valid, but can't make more reliable in the case
* of bounds not being up to date.
*/
object_flag[object->index] |= SD_OBJECT_INTERSECTS_VOLUME;
}
}
/* Copy object flag. */
dscene->object_flag.copy_to_device();
dscene->object_volume_step.copy_to_device();
}
void ObjectManager::device_update_mesh_offsets(Device *, DeviceScene *dscene, Scene *scene)
{
if (dscene->objects.size() == 0) {
return;
}
KernelObject *kobjects = dscene->objects.data();
bool update = false;
foreach (Object *object, scene->objects) {
Geometry *geom = object->geometry;
if (geom->type == Geometry::MESH) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->patch_table) {
uint patch_map_offset = 2 * (mesh->patch_table_offset + mesh->patch_table->total_size() -
mesh->patch_table->num_nodes * PATCH_NODE_SIZE) -
mesh->patch_offset;
if (kobjects[object->index].patch_map_offset != patch_map_offset) {
kobjects[object->index].patch_map_offset = patch_map_offset;
update = true;
}
}
}
if (kobjects[object->index].attribute_map_offset != geom->attr_map_offset) {
kobjects[object->index].attribute_map_offset = geom->attr_map_offset;
update = true;
}
}
if (update) {
dscene->objects.copy_to_device();
}
}
void ObjectManager::device_free(Device *, DeviceScene *dscene)
{
dscene->objects.free();
dscene->object_motion_pass.free();
dscene->object_motion.free();
dscene->object_flag.free();
dscene->object_volume_step.free();
}
void ObjectManager::apply_static_transforms(DeviceScene *dscene, Scene *scene, Progress &progress)
{
/* todo: normals and displacement should be done before applying transform! */
/* todo: create objects/geometry in right order! */
/* counter geometry users */
map<Geometry *, int> geometry_users;
Scene::MotionType need_motion = scene->need_motion();
bool motion_blur = need_motion == Scene::MOTION_BLUR;
bool apply_to_motion = need_motion != Scene::MOTION_PASS;
int i = 0;
bool have_instancing = false;
foreach (Object *object, scene->objects) {
map<Geometry *, int>::iterator it = geometry_users.find(object->geometry);
if (it == geometry_users.end())
geometry_users[object->geometry] = 1;
else
it->second++;
}
if (progress.get_cancel())
return;
uint *object_flag = dscene->object_flag.data();
/* apply transforms for objects with single user geometry */
foreach (Object *object, scene->objects) {
/* Annoying feedback loop here: we can't use is_instanced() because
* it'll use uninitialized transform_applied flag.
*
* Could be solved by moving reference counter to Geometry.
*/
Geometry *geom = object->geometry;
bool apply = (geometry_users[geom] == 1) && !geom->has_surface_bssrdf &&
!geom->has_true_displacement();
if (geom->type == Geometry::MESH) {
Mesh *mesh = static_cast<Mesh *>(geom);
apply = apply && mesh->subdivision_type == Mesh::SUBDIVISION_NONE;
}
if (apply) {
if (!(motion_blur && object->use_motion())) {
if (!geom->transform_applied) {
object->apply_transform(apply_to_motion);
geom->transform_applied = true;
if (progress.get_cancel())
return;
}
object_flag[i] |= SD_OBJECT_TRANSFORM_APPLIED;
if (geom->transform_negative_scaled)
object_flag[i] |= SD_OBJECT_NEGATIVE_SCALE_APPLIED;
}
else
have_instancing = true;
}
else
have_instancing = true;
i++;
}
dscene->data.bvh.have_instancing = have_instancing;
}
void ObjectManager::tag_update(Scene *scene)
{
need_update = true;
scene->curve_system_manager->need_update = true;
scene->geometry_manager->need_update = true;
scene->light_manager->need_update = true;
}
string ObjectManager::get_cryptomatte_objects(Scene *scene)
{
string manifest = "{";
unordered_set<ustring, ustringHash> objects;
foreach (Object *object, scene->objects) {
if (objects.count(object->name)) {
continue;
}
objects.insert(object->name);
uint32_t hash_name = util_murmur_hash3(object->name.c_str(), object->name.length(), 0);
manifest += string_printf("\"%s\":\"%08x\",", object->name.c_str(), hash_name);
}
manifest[manifest.size() - 1] = '}';
return manifest;
}
string ObjectManager::get_cryptomatte_assets(Scene *scene)
{
string manifest = "{";
unordered_set<ustring, ustringHash> assets;
foreach (Object *ob, scene->objects) {
if (assets.count(ob->asset_name)) {
continue;
}
assets.insert(ob->asset_name);
uint32_t hash_asset = util_murmur_hash3(ob->asset_name.c_str(), ob->asset_name.length(), 0);
manifest += string_printf("\"%s\":\"%08x\",", ob->asset_name.c_str(), hash_asset);
}
manifest[manifest.size() - 1] = '}';
return manifest;
}
CCL_NAMESPACE_END