blender/extern/bullet/BulletDynamics/CollisionDispatch/ConvexConvexAlgorithm.cpp

253 lines
6.4 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2005 Erwin Coumans http://www.erwincoumans.com
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "ConvexConvexAlgorithm.h"
#include <stdio.h>
#include "NarrowPhaseCollision/DiscreteCollisionDetectorInterface.h"
#include "BroadphaseCollision/BroadphaseInterface.h"
#include "Dynamics/RigidBody.h"
#include "CollisionShapes/ConvexShape.h"
#include "NarrowPhaseCollision/GjkPairDetector.h"
#include "BroadphaseCollision/BroadphaseProxy.h"
#include "BroadphaseCollision/CollisionDispatcher.h"
#include "CollisionShapes/BoxShape.h"
#include "CollisionDispatch/ManifoldResult.h"
#include "NarrowPhaseCollision/ConvexPenetrationDepthSolver.h"
#include "NarrowPhaseCollision/ContinuousConvexCollision.h"
#include "NarrowPhaseCollision/SubSimplexConvexCast.h"
#include "NarrowPhaseCollision/GjkConvexCast.h"
#include "CollisionShapes/MinkowskiSumShape.h"
#include "NarrowPhaseCollision/VoronoiSimplexSolver.h"
#include "CollisionShapes/SphereShape.h"
#ifdef WIN32
void DrawRasterizerLine(const float* from,const float* to,int color);
#endif
//#define PROCESS_SINGLE_CONTACT
#ifdef WIN32
bool gForceBoxBox = false;//false;//true;
#else
bool gForceBoxBox = false;//false;//true;
#endif
bool gBoxBoxUseGjk = true;//true;//false;
bool gDisableConvexCollision = false;
ConvexConvexAlgorithm::ConvexConvexAlgorithm(PersistentManifold* mf,const CollisionAlgorithmConstructionInfo& ci,BroadphaseProxy* proxy0,BroadphaseProxy* proxy1)
: CollisionAlgorithm(ci),
m_gjkPairDetector(0,0,&m_simplexSolver,&m_penetrationDepthSolver),
m_box0(*proxy0),
m_box1(*proxy1),
m_collisionImpulse(0.f),
m_ownManifold (false),
m_manifoldPtr(mf),
m_lowLevelOfDetail(false)
{
RigidBody* body0 = (RigidBody*)m_box0.m_clientObject;
RigidBody* body1 = (RigidBody*)m_box1.m_clientObject;
if ((body0->getInvMass() != 0.f) ||
(body1->getInvMass() != 0.f))
{
if (!m_manifoldPtr)
{
m_manifoldPtr = m_dispatcher->GetNewManifold(proxy0->m_clientObject,proxy1->m_clientObject);
m_ownManifold = true;
}
}
}
ConvexConvexAlgorithm::~ConvexConvexAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->ReleaseManifold(m_manifoldPtr);
}
}
void ConvexConvexAlgorithm ::SetLowLevelOfDetail(bool useLowLevel)
{
m_lowLevelOfDetail = useLowLevel;
}
float ConvexConvexAlgorithm::GetCollisionImpulse() const
{
if (m_manifoldPtr)
return m_manifoldPtr->GetCollisionImpulse();
return 0.f;
}
class FlippedContactResult : public DiscreteCollisionDetectorInterface::Result
{
DiscreteCollisionDetectorInterface::Result* m_org;
public:
FlippedContactResult(DiscreteCollisionDetectorInterface::Result* org)
: m_org(org)
{
}
virtual void AddContactPoint(const SimdVector3& normalOnBInWorld,const SimdVector3& pointInWorld,float depth)
{
SimdVector3 flippedNormal = -normalOnBInWorld;
m_org->AddContactPoint(flippedNormal,pointInWorld,depth);
}
};
bool extra = false;
float gFriction = 0.5f;
//
// box-box collision algorithm, for simplicity also applies resolution-impulse
//
void ConvexConvexAlgorithm ::ProcessCollision (BroadphaseProxy* ,BroadphaseProxy* ,float timeStep,int stepCount, bool useContinuous)
{
// printf("ConvexConvexAlgorithm::ProcessCollision\n");
m_collisionImpulse = 0.f;
RigidBody* body0 = (RigidBody*)m_box0.m_clientObject;
RigidBody* body1 = (RigidBody*)m_box1.m_clientObject;
if (!m_manifoldPtr)
return;
if ((body0->getInvMass() == 0.f) &&
(body1->getInvMass() == 0.f))
{
return;
}
ManifoldResult output(body0,body1,m_manifoldPtr);
ConvexShape* min0 = static_cast<ConvexShape*>(body0->GetCollisionShape());
ConvexShape* min1 = static_cast<ConvexShape*>(body1->GetCollisionShape());
GjkPairDetector::ClosestPointInput input;
SphereShape sphere(0.2f);
MinkowskiSumShape expanded0(min0,&sphere);
MinkowskiSumShape expanded1(min1,&sphere);
if (useContinuous)
{
m_gjkPairDetector.SetMinkowskiA(&expanded0);
m_gjkPairDetector.SetMinkowskiB(&expanded1);
input.m_maximumDistanceSquared = expanded0.GetMargin()+expanded1.GetMargin();
input.m_maximumDistanceSquared *= input.m_maximumDistanceSquared;
}
else
{
m_gjkPairDetector.SetMinkowskiA(min0);
m_gjkPairDetector.SetMinkowskiB(min1);
input.m_maximumDistanceSquared = min0->GetMargin() + min1->GetMargin() + m_manifoldPtr->GetManifoldMargin();
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
}
input.m_maximumDistanceSquared = 1e30;//
input.m_transformA = body0->getCenterOfMassTransform();
input.m_transformB = body1->getCenterOfMassTransform();
m_gjkPairDetector.GetClosestPoints(input,output);
}
bool disableCcd = false;
float ConvexConvexAlgorithm::CalculateTimeOfImpact(BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,float timeStep,int stepCount)
{
m_collisionImpulse = 0.f;
RigidBody* body0 = (RigidBody*)m_box0.m_clientObject;
RigidBody* body1 = (RigidBody*)m_box1.m_clientObject;
if (!m_manifoldPtr)
return 1.f;
if ((body0->getInvMass() == 0.f) &&
(body1->getInvMass() == 0.f))
{
return 1.f;
}
ConvexShape* min0 = static_cast<ConvexShape*>(body0->GetCollisionShape());
ConvexShape* min1 = static_cast<ConvexShape*>(body1->GetCollisionShape());
GjkPairDetector::ClosestPointInput input;
input.m_transformA = body0->getCenterOfMassTransform();
input.m_transformB = body1->getCenterOfMassTransform();
SimdTransform predictA,predictB;
body0->predictIntegratedTransform(timeStep,predictA);
body1->predictIntegratedTransform(timeStep,predictB);
ConvexCast::CastResult result;
VoronoiSimplexSolver voronoiSimplex;
//SubsimplexConvexCast ccd(&voronoiSimplex);
//GjkConvexCast ccd(&voronoiSimplex);
ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,&m_penetrationDepthSolver);
if (disableCcd)
return 1.f;
if (ccd.calcTimeOfImpact(input.m_transformA,predictA,input.m_transformB,predictB,result))
{
//store result.m_fraction in both bodies
int i;
i=0;
// if (result.m_fraction< 0.1f)
// result.m_fraction = 0.1f;
if (body0->m_hitFraction > result.m_fraction)
body0->m_hitFraction = result.m_fraction;
if (body1->m_hitFraction > result.m_fraction)
body1->m_hitFraction = result.m_fraction;
return result.m_fraction;
}
return 1.f;
}