blender/extern/bullet/BulletDynamics/CollisionDispatch/ConvexConcaveCollisionAlgorithm.cpp

228 lines
6.4 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2005 Erwin Coumans http://continuousphysics.com/Bullet/
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "ConvexConcaveCollisionAlgorithm.h"
#include "Dynamics/RigidBody.h"
#include "CollisionShapes/MultiSphereShape.h"
#include "ConstraintSolver/ContactConstraint.h"
#include "CollisionShapes/BoxShape.h"
#include "ConvexConvexAlgorithm.h"
#include "BroadphaseCollision/BroadphaseProxy.h"
#include "CollisionShapes/TriangleShape.h"
#include "ConstraintSolver/ConstraintSolver.h"
#include "ConstraintSolver/ContactSolverInfo.h"
#include "CollisionDispatch/ManifoldResult.h"
#include "NarrowPhaseCollision/RaycastCallback.h"
#include "CollisionShapes/TriangleMeshShape.h"
ConvexConcaveCollisionAlgorithm::ConvexConcaveCollisionAlgorithm( const CollisionAlgorithmConstructionInfo& ci,BroadphaseProxy* proxy0,BroadphaseProxy* proxy1)
: CollisionAlgorithm(ci),m_convex(*proxy0),m_concave(*proxy1),
m_boxTriangleCallback(ci.m_dispatcher,proxy0,proxy1)
{
}
ConvexConcaveCollisionAlgorithm::~ConvexConcaveCollisionAlgorithm()
{
}
BoxTriangleCallback::BoxTriangleCallback(Dispatcher* dispatcher,BroadphaseProxy* proxy0,BroadphaseProxy* proxy1):
m_boxProxy(proxy0),m_triangleProxy(*proxy1),m_dispatcher(dispatcher),
m_timeStep(0.f),
m_stepCount(-1),
m_triangleCount(0)
{
m_triangleProxy.SetClientObjectType(TRIANGLE_SHAPE_PROXYTYPE);
//
// create the manifold from the dispatcher 'manifold pool'
//
m_manifoldPtr = m_dispatcher->GetNewManifold(proxy0->m_clientObject,proxy1->m_clientObject);
ClearCache();
}
BoxTriangleCallback::~BoxTriangleCallback()
{
ClearCache();
m_dispatcher->ReleaseManifold( m_manifoldPtr );
}
void BoxTriangleCallback::ClearCache()
{
m_manifoldPtr->ClearManifold();
};
void BoxTriangleCallback::ProcessTriangle(SimdVector3* triangle)
{
//just for debugging purposes
//printf("triangle %d",m_triangleCount++);
RigidBody* triangleBody = (RigidBody*)m_triangleProxy.m_clientObject;
//aabb filter is already applied!
CollisionAlgorithmConstructionInfo ci;
ci.m_dispatcher = m_dispatcher;
ConvexShape* tmp = static_cast<ConvexShape*>(triangleBody->GetCollisionShape());
if (m_boxProxy->IsConvexShape())
{
TriangleShape tm(triangle[0],triangle[1],triangle[2]);
tm.SetMargin(m_collisionMarginTriangle);
RigidBody* triangleBody = (RigidBody* )m_triangleProxy.m_clientObject;
triangleBody->SetCollisionShape(&tm);
ConvexConvexAlgorithm cvxcvxalgo(m_manifoldPtr,ci,m_boxProxy,&m_triangleProxy);
triangleBody->SetCollisionShape(&tm);
cvxcvxalgo.ProcessCollision(m_boxProxy,&m_triangleProxy,m_timeStep,m_stepCount,m_useContinuous);
}
triangleBody->SetCollisionShape(tmp);
}
void BoxTriangleCallback::SetTimeStepAndCounters(float timeStep,int stepCount,float collisionMarginTriangle,bool useContinuous)
{
m_triangleCount = 0;
m_timeStep = timeStep;
m_stepCount = stepCount;
m_useContinuous = useContinuous;
m_collisionMarginTriangle = collisionMarginTriangle;
//recalc aabbs
RigidBody* boxBody = (RigidBody* )m_boxProxy->m_clientObject;
RigidBody* triBody = (RigidBody* )m_triangleProxy.m_clientObject;
SimdTransform boxInTriangleSpace;
boxInTriangleSpace = triBody->getCenterOfMassTransform().inverse() * boxBody->getCenterOfMassTransform();
boxBody->GetCollisionShape()->GetAabb(boxInTriangleSpace,m_aabbMin,m_aabbMax);
float extraMargin = CONVEX_DISTANCE_MARGIN;//+0.1f;
SimdVector3 extra(extraMargin,extraMargin,extraMargin);
m_aabbMax += extra;
m_aabbMin -= extra;
}
void ConvexConcaveCollisionAlgorithm::ClearCache()
{
m_boxTriangleCallback.ClearCache();
}
void ConvexConcaveCollisionAlgorithm::ProcessCollision (BroadphaseProxy* ,BroadphaseProxy* ,float timeStep,int stepCount,bool useContinuous)
{
if (m_concave.GetClientObjectType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
RigidBody* convexbody = (RigidBody* )m_convex.m_clientObject;
RigidBody* concavebody = (RigidBody* )m_concave.m_clientObject;
//todo: move this in the dispatcher
if ((convexbody->GetActivationState() == 2) &&(concavebody->GetActivationState() == 2))
return;
TriangleMeshShape* triangleMesh = (TriangleMeshShape*) concavebody->GetCollisionShape();
if (m_convex.IsConvexShape())
{
float collisionMarginTriangle = triangleMesh->GetMargin();
m_boxTriangleCallback.SetTimeStepAndCounters(timeStep,stepCount, collisionMarginTriangle,useContinuous);
#ifdef USE_BOX_TRIANGLE
m_boxTriangleCallback.m_manifoldPtr->ClearManifold();
#endif
m_boxTriangleCallback.m_manifoldPtr->SetBodies(convexbody,concavebody);
triangleMesh->ProcessAllTriangles( &m_boxTriangleCallback,m_boxTriangleCallback.GetAabbMin(),m_boxTriangleCallback.GetAabbMax());
}
}
}
float ConvexConcaveCollisionAlgorithm::CalculateTimeOfImpact(BroadphaseProxy* ,BroadphaseProxy* ,float timeStep,int stepCount)
{
return 1.f;
//quick approximation using raycast, todo: use proper continuou collision detection
RigidBody* convexbody = (RigidBody* )m_convex.m_clientObject;
const SimdVector3& from = convexbody->getCenterOfMassPosition();
SimdVector3 radVec(0,0,0);
float minradius = 0.05f;
float lenSqr = convexbody->getLinearVelocity().length2();
if (lenSqr > SIMD_EPSILON)
{
radVec = convexbody->getLinearVelocity();
radVec.normalize();
radVec *= minradius;
}
SimdVector3 to = from + radVec + convexbody->getLinearVelocity() * timeStep*1.01f;
//only do if the motion exceeds the 'radius'
RaycastCallback raycastCallback(from,to);
raycastCallback.m_hitFraction = convexbody->m_hitFraction;
SimdVector3 aabbMin (-1e30f,-1e30f,-1e30f);
SimdVector3 aabbMax (SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY);
if (m_concave.GetClientObjectType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
RigidBody* concavebody = (RigidBody* )m_concave.m_clientObject;
TriangleMeshShape* triangleMesh = (TriangleMeshShape*) concavebody->GetCollisionShape();
if (triangleMesh)
{
triangleMesh->ProcessAllTriangles(&raycastCallback,aabbMin,aabbMax);
}
}
if (raycastCallback.m_hitFraction < convexbody->m_hitFraction)
{
convexbody->m_hitFraction = raycastCallback.m_hitFraction;
return raycastCallback.m_hitFraction;
}
return 1.f;
}