simple povray render integration.

Supports...
- camera/lamp/mesh object types
- meshes with modifiers applied, normals/uv/vertex colors
- materials, reflection, transparency
- spot/area/point lamps, samples, raytrace options
- scene render size, AA setting

Details...
- Doesn't need any 3rd party modules.
- Runs povray from the subprocess module, updating the image from a TARGA.
- Currently no UI panels or support for custom settings.

This could be used as an example for other scripts.
This commit is contained in:
Campbell Barton 2009-07-28 05:51:38 +00:00
parent e52dbadcff
commit 37b49492a8

@ -0,0 +1,564 @@
import bpy
from math import atan, pi, degrees
import subprocess
import os
import sys
import time
def write_pov(filename, scene=None, info_callback = None):
file = open(filename, 'w')
# Only for testing
if not scene:
scene = bpy.data.scenes[0]
render = scene.render_data
materialTable = {}
def saneName(name):
name = name.lower()
for ch in ' /\\+=-[]{}().,<>\'":;~!@#$%^&*|?':
name = name.replace(ch, '_')
return name
def writeMatrix(matrix):
file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\
(matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]) )
def exportCamera():
camera = scene.camera
matrix = camera.matrix
# compute resolution
Qsize=float(render.resolution_x)/float(render.resolution_y)
file.write('camera {\n')
file.write('\tlocation <0, 0, 0>\n')
file.write('\tlook_at <0, 0, -1>\n')
file.write('\tright <%s, 0, 0>\n' % -Qsize)
file.write('\tup <0, 1, 0>\n')
file.write('\tangle %f \n' % (360.0*atan(16.0/camera.data.lens)/pi))
file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotationPart().toEuler()]))
file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
file.write('}\n')
def exportLamps(lamps):
# Get all lamps
for ob in lamps:
lamp = ob.data
matrix = ob.matrix
color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
file.write('light_source')
file.write('{\n')
file.write('\t< 0,0,0 >\n')
file.write('\tcolor red %.6f green %.6f blue %.6f\n' % color)
if lamp.type == 'POINT': # Point Lamp
pass
elif lamp.type == 'SPOT': # Spot
file.write('\tspotlight\n')
# Falloff is the main radius from the centre line
file.write('\tfalloff %.2f\n' % (lamp.spot_size/2.0) ) # 1 TO 179 FOR BOTH
file.write('\tradius %.6f\n' % ((lamp.spot_size/2.0) * (1-lamp.spot_blend)) )
# Blender does not have a tightness equivilent, 0 is most like blender default.
file.write('\ttightness 0\n') # 0:10f
file.write('\tpoint_at <0, 0, -1>\n')
elif lamp.type == 'AREA':
size_x = lamp.size
samples_x = lamp.shadow_ray_samples_x
if lamp.shape == 'SQUARE':
size_y = size_x
samples_y = samples_x
else:
size_y = lamp.size_y
samples_y = lamp.shadow_ray_samples_y
file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
if lamp.jitter:
file.write('\tjitter\n')
else:
file.write('\tadaptive 1\n')
file.write('\tjitter\n')
if lamp.shadow_method == 'NOSHADOW':
file.write('\tshadowless\n')
file.write('\tfade_distance %.6f\n' % lamp.distance)
file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
writeMatrix(matrix)
file.write('}\n')
def exportMeshs(sel):
def bMat2PovString(material):
povstring = 'finish {'
if world != None:
povstring += 'ambient <%.6f, %.6f, %.6f> ' % tuple([c*material.ambient for c in world.ambient_color])
povstring += 'diffuse %.6f ' % material.diffuse_reflection
povstring += 'specular %.6f ' % material.specular_reflection
if material.raytrace_mirror.enabled:
#povstring += 'interior { ior %.6f } ' % material.IOR
raytrace_mirror= material.raytrace_mirror
if raytrace_mirror.reflect:
povstring += 'reflection {'
povstring += '<%.6f, %.6f, %.6f>' % tuple(material.mirror_color) # Should ask for ray mirror flag
povstring += 'fresnel 1 falloff %.6f exponent %.6f metallic %.6f} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_fac, raytrace_mirror.reflect)
if material.raytrace_transparency.enabled:
#povstring += 'interior { ior %.6f } ' % material.IOR
pass
#file.write('\t\troughness %.6f\n' % (material.hard*0.5))
#file.write('\t\t\tcrand 0.0\n') # Sand granyness
#file.write('\t\t\tmetallic %.6f\n' % material.spec)
#file.write('\t\t\tphong %.6f\n' % material.spec)
#file.write('\t\t\tphong_size %.6f\n' % material.spec)
povstring += 'brilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
povstring += '}'
#file.write('\t}\n')
return povstring
world = scene.world
# Convert all materials to strings we can access directly per vertex.
for material in bpy.data.materials:
materialTable[material.name] = bMat2PovString(material)
ob_num = 0
for ob in sel:
ob_num+= 1
if ob.type in ('LAMP', 'CAMERA', 'EMPTY'):
continue
me = ob.data
me_materials= me.materials
me = ob.create_render_mesh(scene)
if not me:
continue
if info_callback:
info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
#if ob.type!='MESH':
# continue
# me = ob.data
matrix = ob.matrix
try: uv_layer = me.active_uv_texture.data
except:uv_layer = None
try: vcol_layer = me.active_vertex_color.data
except:vcol_layer = None
def regular_face(f):
fv = f.verts
if fv[3]== 0:
return fv[0], fv[1], fv[2]
return fv[0], fv[1], fv[2], fv[3]
faces_verts = [regular_face(f) for f in me.faces]
faces_normals = [tuple(f.normal) for f in me.faces]
verts_normals = [tuple(v.normal) for v in me.verts]
# quads incur an extra face
quadCount = len([f for f in faces_verts if len(f)==4])
file.write('mesh2 {\n')
file.write('\tvertex_vectors {\n')
file.write('\t\t%s' % (len(me.verts))) # vert count
for v in me.verts:
file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
file.write('\n }\n')
# Build unique Normal list
uniqueNormals = {}
for fi, f in enumerate(me.faces):
fv = faces_verts[fi]
# [-1] is a dummy index, use a list so we can modify in place
if f.smooth: # Use vertex normals
for v in fv:
key = verts_normals[v]
uniqueNormals[key] = [-1]
else: # Use face normal
key = faces_normals[fi]
uniqueNormals[key] = [-1]
file.write('\tnormal_vectors {\n')
file.write('\t\t%d' % len(uniqueNormals)) # vert count
idx = 0
for no, index in uniqueNormals.items():
file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
index[0] = idx
idx +=1
file.write('\n }\n')
# Vertex colours
vertCols = {} # Use for material colours also.
if uv_layer:
# Generate unique UV's
uniqueUVs = {}
for fi, uv in enumerate(uv_layer):
if len(faces_verts[fi])==4:
uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
else:
uvs = uv.uv1, uv.uv2, uv.uv3
for uv in uvs:
uniqueUVs[tuple(uv)] = [-1]
file.write('\tuv_vectors {\n')
#print unique_uvs
file.write('\t\t%s' % (len(uniqueUVs))) # vert count
idx = 0
for uv, index in uniqueUVs.items():
file.write(',\n\t\t<%.6f, %.6f>' % uv)
index[0] = idx
idx +=1
'''
else:
# Just add 1 dummy vector, no real UV's
file.write('\t\t1') # vert count
file.write(',\n\t\t<0.0, 0.0>')
'''
file.write('\n }\n')
if me.vertex_colors:
for fi, f in enumerate(me.faces):
material_index = f.material_index
material = me_materials[material_index]
if material and material.vertex_color_paint:
col = vcol_layer[fi]
if len(faces_verts[fi])==4:
cols = col.color1, col.color2, col.color3, col.color4
else:
cols = col.color1, col.color2, col.color3
for col in cols:
key = col[0], col[1], col[2], material_index # Material index!
vertCols[key] = [-1]
else:
if material:
diffuse_color = tuple(material.diffuse_color)
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
vertCols[key] = [-1]
else:
# No vertex colours, so write material colours as vertex colours
for i, material in enumerate(me_materials):
if material:
diffuse_color = tuple(material.diffuse_color)
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
vertCols[key] = [-1]
# Vert Colours
file.write('\ttexture_list {\n')
file.write('\t\t%s' % (len(vertCols))) # vert count
idx=0
for col, index in vertCols.items():
if me_materials:
material = me_materials[col[3]]
materialString = materialTable[material.name]
else:
materialString = '' # Dont write anything
float_col = col[0], col[1], col[2], 1-material.alpha, materialString
#print material.apl
file.write(',\n\t\ttexture { pigment {rgbf<%.6f, %.6f, %.6f, %.6f>}%s}' % float_col)
index[0] = idx
idx+=1
file.write( '\n }\n' )
# Face indicies
file.write('\tface_indices {\n')
file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
for fi, f in enumerate(me.faces):
fv = faces_verts[fi]
material_index= f.material_index
if len(fv) == 4: indicies = (0,1,2), (0,2,3)
else: indicies = ((0,1,2),)
if vcol_layer:
col = vcol_layer[fi]
if len(fv) == 4:
cols = col.color1, col.color2, col.color3, col.color4
else:
cols = col.color1, col.color2, col.color3
if not me_materials or me_materials[material_index] == None: # No materials
for i1, i2, i3 in indicies:
file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
else:
material = me_materials[material_index]
for i1, i2, i3 in indicies:
if me.vertex_colors and material.vertex_color_paint:
# Colour per vertex - vertex colour
col1 = cols[i1]
col2 = cols[i2]
col3 = cols[i3]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
else:
# Colour per material - flat material colour
diffuse_color= material.diffuse_color
ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
file.write('\n }\n')
# normal_indices indicies
file.write('\tnormal_indices {\n')
file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
for fi, f in enumerate(me.faces):
fv = faces_verts[fi]
if len(fv) == 4: indicies = (0,1,2), (0,2,3)
else: indicies = ((0,1,2),)
for i1, i2, i3 in indicies:
if f.smooth:
file.write(',\n\t\t<%d,%d,%d>' %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
else:
idx = uniqueNormals[faces_normals[fi]][0]
file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
file.write('\n }\n')
# normal_indices indicies
if uv_layer:
file.write('\tuv_indices {\n')
file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
for f in me.faces:
fv = faces_verts[fi]
if len(fv) == 4: indicies = (0,1,2), (0,2,3)
else: indicies = ((0,1,2),)
uv = uv_layer[fi]
if len(faces_verts[fi])==4:
uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
else:
uvs = uv.uv1, uv.uv2, uv.uv3
for i1, i2, i3 in indicies:
file.write(',\n\t\t<%d,%d,%d>' %\
(uniqueUVs[tuple(uvs[i1][0:2])][0],\
uniqueUVs[tuple(uvs[i2][0:2])][0],\
uniqueUVs[tuple(uvs[i2][0:2])][0])) # vert count
file.write('\n }\n')
if me.materials:
material = me.materials[0] # dodgy
if material and material.raytrace_transparency.enabled:
file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
writeMatrix(matrix)
file.write('}\n')
bpy.data.remove_mesh(me)
exportCamera()
#exportMaterials()
sel = scene.objects
lamps = [l for l in sel if l.type == 'LAMP']
exportLamps(lamps)
exportMeshs(sel)
file.close()
def write_pov_ini(filename_ini, filename_pov, filename_image):
scene = bpy.data.scenes[0]
render = scene.render_data
x= int(render.resolution_x*render.resolution_percentage*0.01)
y= int(render.resolution_y*render.resolution_percentage*0.01)
file = open(filename_ini, 'w')
file.write('Input_File_Name="%s"\n' % filename_pov)
file.write('Output_File_Name="%s"\n' % filename_image)
file.write('Width=%d\n' % x)
file.write('Height=%d\n' % y)
# Needed for border render.
'''
file.write('Start_Column=%d\n' % part.x)
file.write('End_Column=%d\n' % (part.x+part.w))
file.write('Start_Row=%d\n' % (part.y))
file.write('End_Row=%d\n' % (part.y+part.h))
'''
file.write('Display=0\n')
file.write('Pause_When_Done=0\n')
file.write('Output_File_Type=C\n') # TGA, best progressive loading
file.write('Output_Alpha=1\n')
if render.antialiasing:
aa_mapping = {'OVERSAMPLE_5':2, 'OVERSAMPLE_8':3, 'OVERSAMPLE_11':4, 'OVERSAMPLE_16':5} # method 1 assumed
file.write('Antialias=1\n')
file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
else:
file.write('Antialias=0\n')
file.close()
class PovrayRenderEngine(bpy.types.RenderEngine):
__label__ = "Povray"
DELAY = 0.02
def _export(self, scene):
import tempfile
self.temp_file_in = tempfile.mktemp(suffix='.pov')
self.temp_file_out = tempfile.mktemp(suffix='.ppm')
self.temp_file_ini = tempfile.mktemp(suffix='.ini')
def info_callback(txt):
self.update_stats("", "POVRAY: " + txt)
write_pov(self.temp_file_in, scene, info_callback)
def _render(self):
try: os.remove(self.temp_file_out) # so as not to load the old file
except: pass
write_pov_ini(self.temp_file_ini, self.temp_file_in, self.temp_file_out)
print ("***-STARTING-***")
# This works too but means we have to wait until its done
# os.system('povray %s' % self.temp_file_ini)
self.process = subprocess.Popen(["povray", self.temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
print ("***-DONE-***")
def _cleanup(self):
for f in (self.temp_file_in, self.temp_file_ini, self.temp_file_out):
try: os.remove(f)
except: pass
self.update_stats("", "")
def render(self, scene):
self.update_stats("", "POVRAY: Exporting data from Blender")
self._export(scene)
self.update_stats("", "POVRAY: Parsing File")
self._render()
r = scene.render_data
# compute resolution
x= int(r.resolution_x*r.resolution_percentage*0.01)
y= int(r.resolution_y*r.resolution_percentage*0.01)
# Wait for the file to be created
while not os.path.exists(self.temp_file_out):
time.sleep(self.DELAY)
self.update_stats("", "POVRAY: Rendering")
prev_size = -1
def update_image():
result = self.begin_result(0, 0, x, y)
lay = result.layers[0]
# possible the image wont load early on.
try: lay.rect_from_file(self.temp_file_out, 0, 0)
except: pass
self.end_result(result)
# Update while povray renders
while True:
# test if povray exists
if self.process.poll() != None:
update_image();
break
# user exit
if self.test_break():
try: # It might not be running
self.process.terminate()
except:
pass
break
# Would be nice to redirect the output
# stdout_value, stderr_value = self.process.communicate() # locks
# check if the file updated
new_size = os.path.getsize(self.temp_file_out)
if new_size != prev_size:
update_image()
prev_size = new_size
time.sleep(self.DELAY)
self._cleanup()
bpy.types.register(PovrayRenderEngine)