- PyLong_FromSsize_t --> PyLong_FromLong
- PyLong_AsSsize_t --> PyLong_AsLong
In all places except for those where python api expects PySsize_t (index lookups mainly).
- use PyBool_FromLong in a few areas of the BGE.
- fix incorrect assumption in the BGE that PySequence_Check() means PySequence_Fast_ functions can be used.
backspace was messing up with utf8 text.
hijacking Blender utf8 functions
tested in CMake but I think scons should work too. No idea about pure 'make'
Happy Easter ;)
Adding a UI to set the type on startup can be added easily.
# ----
class myPlayer(GameTypes.KX_GameObject):
def die(self):
# ... do stuff ...
self.endObject()
# make an instance
player = myPlayer(gameOb) # gameOb is made invalid now.
player.die()
# ----
One limitation (which could also be an advantage), is making the subclass instance will return that subclass everywhere, you cant have 2 different subclasses of the same BGE data at once.
Remove the last of the odd C++/python wrapper code from http://www.python.org/doc/PyCPP.html (~1998)
* Use python subclasses rather then having fake subclassing through get/set attributes calling parent types.
* PyObject getset arrays are created while initializing the types, converted from our own attribute arrays. This way python deals with subclasses and we dont have to define getattro or setattro functions for each type.
* GameObjects and Scenes no longer have attribute access to properties. only dictionary style access - ob['prop']
* remove each class's get/set/dir functions.
* remove isA() methods, can use PyObject_TypeCheck() in C and issubclass() in python.
* remove Parents[] array for each C++ class, was only used for isA() and wasnt correct in quite a few cases.
* remove PyTypeObject that was being passed as the last argument to each class (the parent classes too).
TODO -
* Light and VertexProxy need to be converted to using attributes.
* memory for getset arrays is never freed, not that bad since its will only allocates once.
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r19820:HEAD
Notes:
* Game and sequencer RNA, and sequencer header are now out of date
a bit after changes in trunk.
* I didn't know how to port these bugfixes, most likely they are
not needed anymore.
* Fix "duplicate strip" always increase the user count for ipo.
* IPO pinning on sequencer strips was lost during Undo.
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or
full scan. The logic engine is now free of memory allocation, which is
an important stability factor.
The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.
The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:
Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.
With the new system, the sequential execution of controllers is still
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.
If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.
Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
When enabled, this option converts any positive trigger from the sensor
into a pair of positive+negative trigger, with the negative trigger sent
in the next frame. The negative trigger from the sensor are not passed
to the controller as the option automatically generates the negative triggers.
From the controller point of view, the sensor is positive only for 1 frame,
even if the underlying sensor state remains positive.
The option interacts with the other sensor option in this way:
- Level option: tap option is mutually exclusive with level option. Both
cannot be enabled at the same time.
- Invert option: tap option operates on the negative trigger of the
sensor, which are converted to positive trigger by the invert option.
Hence, the controller will see the sensor positive for 1 frame when
the underlying sensor state turns negative.
- Positive pulse option: tap option adds a negative trigger after each
repeated positive pulse, unless the frequency option is 0, in which case
positive pulse are generated on every frame as before, as long as the
underlying sensor state is positive.
- Negative pulse option: this option is not compatible with tap option
and is ignored when tap option is enabled.
Notes:
- Keyboard "All keys" is handled specially when tap option is set:
There will be one pair of positive/negative trigger for each new
key press, regardless on how many keys are already pressed and there
is no trigger when keys are released, regardless if keys are still
pressed.
In case two keys are pressed in succesive frames, there will
be 2 positive triggers and 1 negative trigger in the following frame.
PyObjectPlus::ProcessReplica() is now called when any of its subclasses are replicated.
This is important because PyObjectPlus::ProcessReplica() NULL's the 'm_proxy' python pointer I added recently.
Without this a replicated subclass of PyObjectPlus could have an invalid pointer (crashing the BGE).
This change also means CValue::AddDataToReplica() can be moved into CValue::ProcessReplica() since ProcessReplica is always called.
Separate getting a normal attribute and getting __dict__, was having to do too a check for __dict__ on each class (multiple times per getattro call from python) when its not used that often.
- More verbose error messages.
- BL_Shader wasnt setting error messages on some errors
- FilterNormal depth attribute was checking for float which is bad because scripts often expect ints assigned to float attributes.
- Added a check to PyVecTo for a tuple rather then always using a generic python sequence. On my system this is over 2x faster with an optmized build.
- comments to PyObjectPlus.h
- remove unused/commented junk.
- renamed PyDestructor to py_base_dealloc for consistency
- all the PyTypeObject's were still using the sizeof() their class, can use sizeof(PyObjectPlus_Proxy) now which is smaller too.
this means it caches the compiled pyc files after importing fro the first time.
My times for importing 501 buttons_objects.py files were.
- running each as a script 1.9sec
- importing for the first time 1.8sec
- importing a second time (using pyc files) 0.57sec
Also added "bpy" to sys.modules so it can be imported.
- multi-line strings for bitmap text
- keyboard sensor now logs return and pad enter as "\n"
BGE std::vector use in Value.cpp and RAS_MaterialBucket.cpp
The size of a new list is known before making them, reduce re-allocs, though probably not a noticeable speedup.
Use each types dictionary to store attributes PyAttributeDef's so it uses pythons hash lookup (which it was already doing for methods) rather then doing a string lookup on the array each time.
This also means attributes can be found in the type without having to do a dir() on the instance.
- Initialize python types with PyType_Ready, which adds methods to the type dictionary.
- use Pythons get/setattro (uses a python string for the attribute rather then char*). Using basic C strings seems nice but internally python converts them to python strings and discards them for most functions that accept char arrays.
- Method lookups use the PyTypes dictionary (should be faster then Py_FindMethod)
- Renamed __getattr -> py_base_getattro, _getattr -> py_getattro, __repr -> py_base_repr, py_delattro, py_getattro_self etc.
From here is possible to put all the parent classes methods into each python types dictionary to avoid nested lookups (api has 4 levels of lookups in some places), tested this but its not ready yet.
Simple tests for getting a method within a loop show this to be between 0.5 and 3.2x faster then using Py_FindMethod()
Added the method into the PyType so python knows about the methods (its supposed to work this way).
This means in the future the api can use PyType_Ready() to store the methods in the types dictionary.
Python3 removes Py_FindMethod and we should not be using it anyway since its not that efficient.