- spelling - turns out we had tessellation spelt wrong all over.
- use \directive for doxy (not @directive)
- remove BLI_sparsemap.h - was from bmesh merge IIRC but entire file commented and not used.
Remove the last of the odd C++/python wrapper code from http://www.python.org/doc/PyCPP.html (~1998)
* Use python subclasses rather then having fake subclassing through get/set attributes calling parent types.
* PyObject getset arrays are created while initializing the types, converted from our own attribute arrays. This way python deals with subclasses and we dont have to define getattro or setattro functions for each type.
* GameObjects and Scenes no longer have attribute access to properties. only dictionary style access - ob['prop']
* remove each class's get/set/dir functions.
* remove isA() methods, can use PyObject_TypeCheck() in C and issubclass() in python.
* remove Parents[] array for each C++ class, was only used for isA() and wasnt correct in quite a few cases.
* remove PyTypeObject that was being passed as the last argument to each class (the parent classes too).
TODO -
* Light and VertexProxy need to be converted to using attributes.
* memory for getset arrays is never freed, not that bad since its will only allocates once.
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r19820:HEAD
Notes:
* Game and sequencer RNA, and sequencer header are now out of date
a bit after changes in trunk.
* I didn't know how to port these bugfixes, most likely they are
not needed anymore.
* Fix "duplicate strip" always increase the user count for ipo.
* IPO pinning on sequencer strips was lost during Undo.
bug reported by blenderage on blenderartist (found other bugs too).
- "All Hat Events" didnt work.
- Multiple hats didnt work
- use a menu with direction names rather then have the user guess. disallow zero as a direction.
- Allow up to 4 hats (was 2).
- Python api was clamping the axis to 2, maximum is currently JOYAXIS_MAX - 16
- New python attributes hatValues and hatSingle, match axis functions.
- Use SDL Axis events to fill in the axis and hat array rather then filling in every axis with SDL_JoystickGetAxis for each axis event.
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or
full scan. The logic engine is now free of memory allocation, which is
an important stability factor.
The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.
The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:
Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.
With the new system, the sequential execution of controllers is still
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.
If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.
Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
Separate getting a normal attribute and getting __dict__, was having to do too a check for __dict__ on each class (multiple times per getattro call from python) when its not used that often.
- Raised limit of 2 axis to 4 axis pairs (4==8 joysticks axis pairs)
- Added a new Joystick Sensor type "Single Axis", so you can detect horizontal or vertical movement, rather then just Up/Down/Left/Right
- added Python attribute "axisSingle" so you can get the value from the selected axis (rather then getting it out of the axis list)
- renamed Py attribute "axisPosition" to "axisValues" (was never in a release)
If we need to increase the axis limit again just change JOYAXIS_MAX and the button limits.
- Initialize python types with PyType_Ready, which adds methods to the type dictionary.
- use Pythons get/setattro (uses a python string for the attribute rather then char*). Using basic C strings seems nice but internally python converts them to python strings and discards them for most functions that accept char arrays.
- Method lookups use the PyTypes dictionary (should be faster then Py_FindMethod)
- Renamed __getattr -> py_base_getattro, _getattr -> py_getattro, __repr -> py_base_repr, py_delattro, py_getattro_self etc.
From here is possible to put all the parent classes methods into each python types dictionary to avoid nested lookups (api has 4 levels of lookups in some places), tested this but its not ready yet.
Simple tests for getting a method within a loop show this to be between 0.5 and 3.2x faster then using Py_FindMethod()
Use 'const char *' rather then the C++ 'STR_String' type for the attribute identifier of python attributes.
Each attribute and method access from python was allocating and freeing the string.
A simple test with getting an attribute a loop shows this speeds up attribute lookups a bit over 2x.
* Value clamping to min/max is now supported as an option for integer, float
and string attribute (for string clamping=trim to max length)
* Post check function now take PyAttributeDef parameter so that more
generic function can be written.
* Definition of SCA_ILogicBrick::CheckProperty() function to check that
a string attribute contains a valid property name of the parent game object.
* Definition of enum attribute vi KX_PYATTRIBUTE_ENUM... macros.
Enum are handled just like integer but to be totally paranoid, the sizeof()
of the enum member is check at run time to match integer size.
* More bricks updated to use the framework.
The principle is to replace most get/set methods of logic bricks by direct property access.
To make porting of game code easier, the properties have usually the same type and use than
the return values/parameters of the get/set methods.
More details on http://wiki.blender.org/index.php/GameEngineDev/Python_API_Clean_Up
Old methods are still available but will produce deprecation warnings on the console:
"<method> is deprecated, use the <property> property instead"
You can avoid these messages by turning on the "Ignore deprecation warnings" option in Game menu.
PyDoc is updated to include the new properties and display a deprecation warning
for the get/set methods that are being deprecated.
* use SDL events to trigger the sensor, trigger was being forced every tick. removed workaround for this problem.
* added "All Events" option, similar to all keys in the keyboard sensor.
This means every event from the joystick will trigger the sensor, however only events from the selected type (axis/button/hat) is used to set the positive state of the sensor.
* Added python function sens_joy.GetButtonValues(), returns a list of pressed button indicies.
* Removed pressed/released option for joystick buttons, it was the same as the invert option.
This patch introduces a simple state engine system with the logic bricks. This system features full
backward compatibility, multiple active states, multiple state transitions, automatic disabling of
sensor and actuators, full GUI support and selective display of sensors and actuators.
Note: Python API is available but not documented yet. It will be added asap.
State internals
===============
The state system is object based. The current state mask is stored in the object as a 32 bit value;
each bit set in the mask is an active state. The controllers have a state mask too but only one bit
can be set: a controller belongs to a single state. The game engine will only execute controllers
that belong to active states. Sensors and actuators don't have a state mask but are effectively
attached to states via their links to the controllers. Sensors and actuators can be connected to more
than one state. When a controller becomes inactive because of a state change, its links to sensors
and actuators are temporarily broken (until the state becomes active again). If an actuator gets isolated,
i.e all the links to controllers are broken, it is automatically disabled. If a sensor gets isolated,
the game engine will stop calling it to save CPU. It will also reset the sensor internal state so that
it can react as if the game just started when it gets reconnected to an active controller. For example,
an Always sensor in no pulse mode that is connected to a single state (i.e connected to one or more
controllers of a single state) will generate a pulse each time the state becomes active. This feature is
not available on all sensors, see the notes below.
GUI
===
This system system is fully configurable through the GUI: the object state mask is visible under the
object bar in the controller's colum as an array of buttons just like the 3D view layer mask.
Click on a state bit to only display the controllers of that state. You can select more than one state
with SHIFT-click. The All button sets all the bits so that you can see all the controllers of the object.
The Ini button sets the state mask back to the object default state. You can change the default state
of object by first selecting the desired state mask and storing using the menu under the State button.
If you define a default state mask, it will be loaded into the object state make when you load the blend
file or when you run the game under the blenderplayer. However, when you run the game under Blender,
the current selected state mask will be used as the startup state for the object. This allows you to test
specific state during the game design.
The controller display the state they belong to with a new button in the controller header. When you add
a new controller, it is added by default in the lowest enabled state. You can change the controller state
by clicking on the button and selecting another state. If more than one state is enabled in the object
state mask, controllers are grouped by state for more readibility.
The new Sta button in the sensor and actuator column header allows you to display only the sensors and
actuators that are linked to visible controllers.
A new state actuator is available to modify the state during the game. It defines a bit mask and
the operation to apply on the current object state mask:
Cpy: the bit mask is copied to the object state mask.
Add: the bits that set in the bit mask will be turned on in the object state mask.
Sub: the bits that set in the bit mask will be turned off in the object state mask.
Inv: the bits that set in the bit mask will be inverted in the objecyy state mask.
Notes
=====
- Although states have no name, a simply convention consists in using the name of the first controller
of the state as the state name. The GUI will support that convention by displaying as a hint the name
of the first controller of the state when you move the mouse over a state bit of the object state mask
or of the state actuator bit mask.
- Each object has a state mask and each object can have a state engine but if several objects are
part of a logical group, it is recommended to put the state engine only in the main object and to
link the controllers of that object to the sensors and actuators of the different objects.
- When loading an old blend file, the state mask of all objects and controllers are initialized to 1
so that all the controllers belong to this single state. This ensures backward compatibility with
existing game.
- When the state actuator is activated at the same time as other actuators, these actuators are
guaranteed to execute before being eventually disabled due to the state change. This is useful for
example to send a message or update a property at the time of changing the state.
- Sensors that depend on underlying resource won't reset fully when they are isolated. By the time they
are acticated again, they will behave as follow:
* keyboard sensor: keys already pressed won't be detected. The keyboard sensor is only sensitive
to new key press.
* collision sensor: objects already colliding won't be detected. Only new collisions are
detected.
* near and radar sensor: same as collision sensor.