blender/intern/cycles/kernel/svm/svm_tex_coord.h
Brecht Van Lommel 27d647dcf8 Cycles: 4 new nodes.
* Tangent: generate a tangent direction for anisotropic shading. Can be either
  radial around X/Y/Z axis, or from a UV map. The default tangent for the
  anisotropic BSDF and geometry node is now always radial Z, for UV tangent use
  this node now.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More#Tangent

* Normal Map: generate a perturbed normal from an RGB normal map image. This
  is usually chained with an Image Texture node in the color input, to specify
  the normal map image. For tangent space normal maps, the UV coordinates for
  the image must match, and the image texture should be set to Non-Color mode
  to give correct results.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More#Normal_Map

* Refraction BSDF: for best results this node should be considered as a building
  block and not be used on its own, but rather mixed with a glossy node using a
  fresnel type factor. Otherwise it will give quite dark results at the edges for
  glossy refraction.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Refraction

* Ambient Occlusion: controls the amount of AO a surface receives, rather than
  having just a global factor in the world. Note that this outputs a shader and
  not a color, that's for another time.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Ambient_Occlusion
2012-11-06 19:59:02 +00:00

316 lines
8.2 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* Texture Coordinate Node */
__device_inline float3 svm_background_offset(KernelGlobals *kg)
{
Transform cameratoworld = kernel_data.cam.cameratoworld;
return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
}
__device_inline float3 svm_world_to_ndc(KernelGlobals *kg, ShaderData *sd, float3 P)
{
if(kernel_data.cam.type != CAMERA_PANORAMA) {
if(sd->object == ~0)
P += svm_background_offset(kg);
Transform tfm = kernel_data.cam.worldtondc;
return transform_perspective(&tfm, P);
}
else {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != ~0)
P = normalize(transform_point(&tfm, P));
else
P = normalize(transform_direction(&tfm, P));
float2 uv = direction_to_panorama(kg, P);
return make_float3(uv.x, uv.y, 0.0f);
}
}
__device void svm_node_tex_coord(KernelGlobals *kg, ShaderData *sd, float *stack, uint type, uint out_offset)
{
float3 data;
switch(type) {
case NODE_TEXCO_OBJECT: {
if(sd->object != ~0) {
data = sd->P;
object_inverse_position_transform(kg, sd, &data);
}
else
data = sd->P;
break;
}
case NODE_TEXCO_NORMAL: {
if(sd->object != ~0) {
data = sd->N;
object_inverse_normal_transform(kg, sd, &data);
}
else
data = sd->N;
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != ~0)
data = transform_point(&tfm, sd->P);
else
data = transform_point(&tfm, sd->P + svm_background_offset(kg));
break;
}
case NODE_TEXCO_WINDOW: {
data = svm_world_to_ndc(kg, sd, sd->P);
break;
}
case NODE_TEXCO_REFLECTION: {
if(sd->object != ~0)
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
}
stack_store_float3(stack, out_offset, data);
}
__device void svm_node_tex_coord_bump_dx(KernelGlobals *kg, ShaderData *sd, float *stack, uint type, uint out_offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
switch(type) {
case NODE_TEXCO_OBJECT: {
if(sd->object != ~0) {
data = sd->P + sd->dP.dx;
object_inverse_position_transform(kg, sd, &data);
}
else
data = sd->P + sd->dP.dx;
break;
}
case NODE_TEXCO_NORMAL: {
if(sd->object != ~0) {
data = sd->N;
object_inverse_normal_transform(kg, sd, &data);
}
else
data = sd->N;
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != ~0)
data = transform_point(&tfm, sd->P + sd->dP.dx);
else
data = transform_point(&tfm, sd->P + sd->dP.dx + svm_background_offset(kg));
break;
}
case NODE_TEXCO_WINDOW: {
data = svm_world_to_ndc(kg, sd, sd->P + sd->dP.dx);
break;
}
case NODE_TEXCO_REFLECTION: {
if(sd->object != ~0)
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, stack, type, out_offset);
#endif
}
__device void svm_node_tex_coord_bump_dy(KernelGlobals *kg, ShaderData *sd, float *stack, uint type, uint out_offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
switch(type) {
case NODE_TEXCO_OBJECT: {
if(sd->object != ~0) {
data = sd->P + sd->dP.dy;
object_inverse_position_transform(kg, sd, &data);
}
else
data = sd->P + sd->dP.dy;
break;
}
case NODE_TEXCO_NORMAL: {
if(sd->object != ~0) {
data = sd->N;
object_inverse_normal_transform(kg, sd, &data);
}
else
data = sd->N;
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != ~0)
data = transform_point(&tfm, sd->P + sd->dP.dy);
else
data = transform_point(&tfm, sd->P + sd->dP.dy + svm_background_offset(kg));
break;
}
case NODE_TEXCO_WINDOW: {
data = svm_world_to_ndc(kg, sd, sd->P + sd->dP.dy);
break;
}
case NODE_TEXCO_REFLECTION: {
if(sd->object != ~0)
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, stack, type, out_offset);
#endif
}
__device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset, normal_offset, space;
decode_node_uchar4(node.y, &color_offset, &normal_offset, &space, NULL);
float3 color = stack_load_float3(stack, color_offset);
color = 2.0f*make_float3(color.x - 0.5f, color.y - 0.5f, color.z - 0.5f);
if(space == NODE_NORMAL_MAP_TANGENT) {
/* tangent space */
if(sd->object == ~0) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* first try to get tangent attribute */
int attr_offset = find_attribute(kg, sd, node.z);
int attr_sign_offset = find_attribute(kg, sd, node.w);
if(attr_offset == ATTR_STD_NOT_FOUND || attr_offset == ATTR_STD_NOT_FOUND) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* ensure orthogonal and normalized (interpolation breaks it) */
float3 tangent = triangle_attribute_float3(kg, sd, ATTR_ELEMENT_CORNER, attr_offset, NULL, NULL);
float sign = triangle_attribute_float(kg, sd, ATTR_ELEMENT_CORNER, attr_sign_offset, NULL, NULL);
object_normal_transform(kg, sd, &tangent);
tangent = cross(sd->N, normalize(cross(tangent, sd->N)));;
float3 B = sign * cross(sd->N, tangent);
float3 N = color.x * tangent + color.y * B + color.z * sd->N;
stack_store_float3(stack, normal_offset, normalize(N));
}
else {
/* object, world space */
float3 N = color;
if(space == NODE_NORMAL_MAP_OBJECT)
object_normal_transform(kg, sd, &N);
stack_store_float3(stack, normal_offset, normalize(N));
}
}
__device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint tangent_offset, direction_type, axis;
decode_node_uchar4(node.y, &tangent_offset, &direction_type, &axis, NULL);
float3 tangent;
if(direction_type == NODE_TANGENT_UVMAP) {
/* UV map */
int attr_offset = find_attribute(kg, sd, node.z);
if(attr_offset == ATTR_STD_NOT_FOUND)
tangent = make_float3(0.0f, 0.0f, 0.0f);
else
tangent = triangle_attribute_float3(kg, sd, ATTR_ELEMENT_CORNER, attr_offset, NULL, NULL);
}
else {
/* radial */
int attr_offset = find_attribute(kg, sd, node.z);
float3 generated;
if(attr_offset == ATTR_STD_NOT_FOUND)
generated = sd->P;
else
generated = triangle_attribute_float3(kg, sd, ATTR_ELEMENT_VERTEX, attr_offset, NULL, NULL);
if(axis == NODE_TANGENT_AXIS_X)
tangent = make_float3(0.0f, -(generated.z - 0.5f), (generated.y - 0.5f));
else if(axis == NODE_TANGENT_AXIS_Y)
tangent = make_float3(-(generated.z - 0.5f), 0.0f, (generated.x - 0.5f));
else
tangent = make_float3(-(generated.y - 0.5f), (generated.x - 0.5f), 0.0f);
}
object_normal_transform(kg, sd, &tangent);
tangent = cross(sd->N, normalize(cross(tangent, sd->N)));
stack_store_float3(stack, tangent_offset, tangent);
}
CCL_NAMESPACE_END