blender/intern/cycles/kernel/svm/svm.h
Thomas Dinges 88b30ccb8c Cycles:
* Style cleanup for M_PI constants.
* Move Wireframe node into __EXTRA_NODES__ define
2013-06-14 14:29:00 +00:00

446 lines
12 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef __SVM_H__
#define __SVM_H__
/* Shader Virtual Machine
*
* A shader is a list of nodes to be executed. These are simply read one after
* the other and executed, using an node counter. Each node and it's associated
* data is encoded as one or more uint4's in a 1D texture. If the data is larger
* than an uint4, the node can increase the node counter to compensate for this.
* Floats are encoded as int and then converted to float again.
*
* Nodes write their output into a stack. All stack data in the stack is
* floats, since it's all factors, colors and vectors. The stack will be stored
* in local memory on the GPU, as it would take too many register and indexes in
* ways not known at compile time. This seems the only solution even though it
* may be slow, with two positive factors. If the same shader is being executed,
* memory access will be coalesced, and on fermi cards, memory will actually be
* cached.
*
* The result of shader execution will be a single closure. This means the
* closure type, associated label, data and weight. Sampling from multiple
* closures is supported through the mix closure node, the logic for that is
* mostly taken care of in the SVM compiler.
*/
#include "svm_types.h"
CCL_NAMESPACE_BEGIN
/* Stack */
__device_inline float3 stack_load_float3(float *stack, uint a)
{
kernel_assert(a+2 < SVM_STACK_SIZE);
return make_float3(stack[a+0], stack[a+1], stack[a+2]);
}
__device_inline void stack_store_float3(float *stack, uint a, float3 f)
{
kernel_assert(a+2 < SVM_STACK_SIZE);
stack[a+0] = f.x;
stack[a+1] = f.y;
stack[a+2] = f.z;
}
__device_inline float stack_load_float(float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return stack[a];
}
__device_inline float stack_load_float_default(float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID)? __uint_as_float(value): stack_load_float(stack, a);
}
__device_inline void stack_store_float(float *stack, uint a, float f)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = f;
}
__device_inline int stack_load_int(float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return __float_as_int(stack[a]);
}
__device_inline float stack_load_int_default(float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID)? (int)value: stack_load_int(stack, a);
}
__device_inline void stack_store_int(float *stack, uint a, int i)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = __int_as_float(i);
}
__device_inline bool stack_valid(uint a)
{
return a != (uint)SVM_STACK_INVALID;
}
/* Reading Nodes */
__device_inline uint4 read_node(KernelGlobals *kg, int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
(*offset)++;
return node;
}
__device_inline float4 read_node_float(KernelGlobals *kg, int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
float4 f = make_float4(__uint_as_float(node.x), __uint_as_float(node.y), __uint_as_float(node.z), __uint_as_float(node.w));
(*offset)++;
return f;
}
__device_inline float4 fetch_node_float(KernelGlobals *kg, int offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, offset);
return make_float4(__uint_as_float(node.x), __uint_as_float(node.y), __uint_as_float(node.z), __uint_as_float(node.w));
}
__device_inline void decode_node_uchar4(uint i, uint *x, uint *y, uint *z, uint *w)
{
if(x) *x = (i & 0xFF);
if(y) *y = ((i >> 8) & 0xFF);
if(z) *z = ((i >> 16) & 0xFF);
if(w) *w = ((i >> 24) & 0xFF);
}
CCL_NAMESPACE_END
/* Nodes */
#include "svm_noise.h"
#include "svm_texture.h"
#include "svm_attribute.h"
#include "svm_gradient.h"
#include "svm_closure.h"
#include "svm_noisetex.h"
#include "svm_convert.h"
#include "svm_displace.h"
#include "svm_fresnel.h"
#include "svm_wireframe.h"
#include "svm_wavelength.h"
#include "svm_camera.h"
#include "svm_geometry.h"
#include "svm_hsv.h"
#include "svm_image.h"
#include "svm_gamma.h"
#include "svm_brightness.h"
#include "svm_invert.h"
#include "svm_light_path.h"
#include "svm_magic.h"
#include "svm_mapping.h"
#include "svm_normal.h"
#include "svm_wave.h"
#include "svm_math.h"
#include "svm_mix.h"
#include "svm_ramp.h"
#include "svm_sepcomb_rgb.h"
#include "svm_musgrave.h"
#include "svm_sky.h"
#include "svm_tex_coord.h"
#include "svm_value.h"
#include "svm_voronoi.h"
#include "svm_checker.h"
#include "svm_brick.h"
CCL_NAMESPACE_BEGIN
/* Main Interpreter Loop */
__device_noinline void svm_eval_nodes(KernelGlobals *kg, ShaderData *sd, ShaderType type, float randb, int path_flag)
{
float stack[SVM_STACK_SIZE];
float closure_weight = 1.0f;
int offset = sd->shader & SHADER_MASK;
#ifdef __MULTI_CLOSURE__
sd->num_closure = 0;
sd->randb_closure = randb;
#else
sd->closure.type = NBUILTIN_CLOSURES;
#endif
while(1) {
uint4 node = read_node(kg, &offset);
switch(node.x) {
case NODE_SHADER_JUMP: {
if(type == SHADER_TYPE_SURFACE) offset = node.y;
else if(type == SHADER_TYPE_VOLUME) offset = node.z;
else if(type == SHADER_TYPE_DISPLACEMENT) offset = node.w;
else return;
break;
}
case NODE_CLOSURE_BSDF:
svm_node_closure_bsdf(kg, sd, stack, node, randb, path_flag, &offset);
break;
case NODE_CLOSURE_EMISSION:
svm_node_closure_emission(sd, stack, node);
break;
case NODE_CLOSURE_BACKGROUND:
svm_node_closure_background(sd, stack, node);
break;
case NODE_CLOSURE_HOLDOUT:
svm_node_closure_holdout(sd, stack, node);
break;
case NODE_CLOSURE_AMBIENT_OCCLUSION:
svm_node_closure_ambient_occlusion(sd, stack, node);
break;
case NODE_CLOSURE_VOLUME:
svm_node_closure_volume(kg, sd, stack, node, path_flag);
break;
case NODE_CLOSURE_SET_WEIGHT:
svm_node_closure_set_weight(sd, node.y, node.z, node.w);
break;
case NODE_CLOSURE_WEIGHT:
svm_node_closure_weight(sd, stack, node.y);
break;
case NODE_EMISSION_WEIGHT:
svm_node_emission_weight(kg, sd, stack, node);
break;
case NODE_MIX_CLOSURE:
svm_node_mix_closure(sd, stack, node, &offset, &randb);
break;
case NODE_ADD_CLOSURE:
svm_node_add_closure(sd, stack, node.y, node.z, &offset, &randb, &closure_weight);
break;
case NODE_JUMP:
offset = node.y;
break;
#ifdef __IMAGE_TEXTURES__
case NODE_TEX_IMAGE:
svm_node_tex_image(kg, sd, stack, node);
break;
case NODE_TEX_IMAGE_BOX:
svm_node_tex_image_box(kg, sd, stack, node);
break;
case NODE_TEX_ENVIRONMENT:
svm_node_tex_environment(kg, sd, stack, node);
break;
#endif
#ifdef __PROCEDURAL_TEXTURES__
case NODE_TEX_SKY:
svm_node_tex_sky(kg, sd, stack, node.y, node.z);
break;
case NODE_TEX_GRADIENT:
svm_node_tex_gradient(sd, stack, node);
break;
case NODE_TEX_NOISE:
svm_node_tex_noise(kg, sd, stack, node, &offset);
break;
case NODE_TEX_VORONOI:
svm_node_tex_voronoi(kg, sd, stack, node, &offset);
break;
case NODE_TEX_MUSGRAVE:
svm_node_tex_musgrave(kg, sd, stack, node, &offset);
break;
case NODE_TEX_WAVE:
svm_node_tex_wave(kg, sd, stack, node, &offset);
break;
case NODE_TEX_MAGIC:
svm_node_tex_magic(kg, sd, stack, node, &offset);
break;
case NODE_TEX_CHECKER:
svm_node_tex_checker(kg, sd, stack, node);
break;
case NODE_TEX_BRICK:
svm_node_tex_brick(kg, sd, stack, node, &offset);
break;
#endif
case NODE_CAMERA:
svm_node_camera(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_GEOMETRY:
svm_node_geometry(kg, sd, stack, node.y, node.z);
break;
#ifdef __EXTRA_NODES__
case NODE_GEOMETRY_BUMP_DX:
svm_node_geometry_bump_dx(kg, sd, stack, node.y, node.z);
break;
case NODE_GEOMETRY_BUMP_DY:
svm_node_geometry_bump_dy(kg, sd, stack, node.y, node.z);
break;
case NODE_LIGHT_PATH:
svm_node_light_path(sd, stack, node.y, node.z, path_flag);
break;
case NODE_OBJECT_INFO:
svm_node_object_info(kg, sd, stack, node.y, node.z);
break;
case NODE_PARTICLE_INFO:
svm_node_particle_info(kg, sd, stack, node.y, node.z);
break;
#ifdef __HAIR__
case NODE_HAIR_INFO:
svm_node_hair_info(kg, sd, stack, node.y, node.z);
break;
#endif
#endif
case NODE_CONVERT:
svm_node_convert(sd, stack, node.y, node.z, node.w);
break;
case NODE_VALUE_F:
svm_node_value_f(kg, sd, stack, node.y, node.z);
break;
case NODE_VALUE_V:
svm_node_value_v(kg, sd, stack, node.y, &offset);
break;
#ifdef __EXTRA_NODES__
case NODE_INVERT:
svm_node_invert(sd, stack, node.y, node.z, node.w);
break;
case NODE_GAMMA:
svm_node_gamma(sd, stack, node.y, node.z, node.w);
break;
case NODE_BRIGHTCONTRAST:
svm_node_brightness(sd, stack, node.y, node.z, node.w);
break;
case NODE_MIX:
svm_node_mix(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_SEPARATE_RGB:
svm_node_separate_rgb(sd, stack, node.y, node.z, node.w);
break;
case NODE_COMBINE_RGB:
svm_node_combine_rgb(sd, stack, node.y, node.z, node.w);
break;
case NODE_HSV:
svm_node_hsv(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
#endif
case NODE_ATTR:
svm_node_attr(kg, sd, stack, node);
break;
#ifdef __EXTRA_NODES__
case NODE_ATTR_BUMP_DX:
svm_node_attr_bump_dx(kg, sd, stack, node);
break;
case NODE_ATTR_BUMP_DY:
svm_node_attr_bump_dy(kg, sd, stack, node);
break;
#endif
case NODE_FRESNEL:
svm_node_fresnel(sd, stack, node.y, node.z, node.w);
break;
case NODE_LAYER_WEIGHT:
svm_node_layer_weight(sd, stack, node);
break;
#ifdef __EXTRA_NODES__
case NODE_WIREFRAME:
svm_node_wireframe(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_WAVELENGTH:
svm_node_wavelength(sd, stack, node.y, node.z);
break;
case NODE_SET_DISPLACEMENT:
svm_node_set_displacement(sd, stack, node.y);
break;
case NODE_SET_BUMP:
svm_node_set_bump(kg, sd, stack, node);
break;
case NODE_MATH:
svm_node_math(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_VECTOR_MATH:
svm_node_vector_math(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_NORMAL:
svm_node_normal(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
#endif
case NODE_MAPPING:
svm_node_mapping(kg, sd, stack, node.y, node.z, &offset);
break;
case NODE_MIN_MAX:
svm_node_min_max(kg, sd, stack, node.y, node.z, &offset);
break;
case NODE_TEX_COORD:
svm_node_tex_coord(kg, sd, path_flag, stack, node.y, node.z);
break;
#ifdef __EXTRA_NODES__
case NODE_TEX_COORD_BUMP_DX:
svm_node_tex_coord_bump_dx(kg, sd, path_flag, stack, node.y, node.z);
break;
case NODE_TEX_COORD_BUMP_DY:
svm_node_tex_coord_bump_dy(kg, sd, path_flag, stack, node.y, node.z);
break;
case NODE_CLOSURE_SET_NORMAL:
svm_node_set_normal(kg, sd, stack, node.y, node.z );
break;
#endif
case NODE_EMISSION_SET_WEIGHT_TOTAL:
svm_node_emission_set_weight_total(kg, sd, node.y, node.z, node.w);
break;
#ifdef __EXTRA_NODES__
case NODE_RGB_RAMP:
svm_node_rgb_ramp(kg, sd, stack, node, &offset);
break;
case NODE_RGB_CURVES:
svm_node_rgb_curves(kg, sd, stack, node, &offset);
break;
case NODE_VECTOR_CURVES:
svm_node_vector_curves(kg, sd, stack, node, &offset);
break;
case NODE_LIGHT_FALLOFF:
svm_node_light_falloff(sd, stack, node);
break;
#endif
#ifdef __ANISOTROPIC__
case NODE_TANGENT:
svm_node_tangent(kg, sd, stack, node);
break;
#endif
#ifdef __NORMAL_MAP__
case NODE_NORMAL_MAP:
svm_node_normal_map(kg, sd, stack, node);
break;
#endif
case NODE_END:
default:
#ifndef __MULTI_CLOSURE__
sd->closure.weight *= closure_weight;
#endif
return;
}
}
}
CCL_NAMESPACE_END
#endif /* __SVM_H__ */