blender/intern/cycles/kernel/osl/osl_services.cpp
Carlo Andreacchio 7765b73f6d Cycles: add Transparent Depth output to Light Path node.
This can for example be useful if you want to manually terminate the path at
some point and use a color other than black.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D454
2014-04-21 14:44:36 +02:00

1078 lines
31 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#include <string.h>
#include "mesh.h"
#include "object.h"
#include "scene.h"
#include "osl_closures.h"
#include "osl_globals.h"
#include "osl_services.h"
#include "osl_shader.h"
#include "util_foreach.h"
#include "util_string.h"
#include "kernel_compat_cpu.h"
#include "kernel_globals.h"
#include "kernel_random.h"
#include "kernel_projection.h"
#include "kernel_differential.h"
#include "kernel_montecarlo.h"
#include "kernel_camera.h"
#include "geom/geom.h"
#include "kernel_projection.h"
#include "kernel_accumulate.h"
#include "kernel_shader.h"
#ifdef WITH_PTEX
#include <Ptexture.h>
#endif
CCL_NAMESPACE_BEGIN
/* RenderServices implementation */
#define COPY_MATRIX44(m1, m2) memcpy(m1, m2, sizeof(*m2))
/* static ustrings */
ustring OSLRenderServices::u_distance("distance");
ustring OSLRenderServices::u_index("index");
ustring OSLRenderServices::u_camera("camera");
ustring OSLRenderServices::u_screen("screen");
ustring OSLRenderServices::u_raster("raster");
ustring OSLRenderServices::u_ndc("NDC");
ustring OSLRenderServices::u_object_location("object:location");
ustring OSLRenderServices::u_object_index("object:index");
ustring OSLRenderServices::u_geom_dupli_generated("geom:dupli_generated");
ustring OSLRenderServices::u_geom_dupli_uv("geom:dupli_uv");
ustring OSLRenderServices::u_material_index("material:index");
ustring OSLRenderServices::u_object_random("object:random");
ustring OSLRenderServices::u_particle_index("particle:index");
ustring OSLRenderServices::u_particle_age("particle:age");
ustring OSLRenderServices::u_particle_lifetime("particle:lifetime");
ustring OSLRenderServices::u_particle_location("particle:location");
ustring OSLRenderServices::u_particle_rotation("particle:rotation");
ustring OSLRenderServices::u_particle_size("particle:size");
ustring OSLRenderServices::u_particle_velocity("particle:velocity");
ustring OSLRenderServices::u_particle_angular_velocity("particle:angular_velocity");
ustring OSLRenderServices::u_geom_numpolyvertices("geom:numpolyvertices");
ustring OSLRenderServices::u_geom_trianglevertices("geom:trianglevertices");
ustring OSLRenderServices::u_geom_polyvertices("geom:polyvertices");
ustring OSLRenderServices::u_geom_name("geom:name");
ustring OSLRenderServices::u_is_smooth("geom:is_smooth");
#ifdef __HAIR__
ustring OSLRenderServices::u_is_curve("geom:is_curve");
ustring OSLRenderServices::u_curve_thickness("geom:curve_thickness");
ustring OSLRenderServices::u_curve_tangent_normal("geom:curve_tangent_normal");
#endif
ustring OSLRenderServices::u_path_ray_length("path:ray_length");
ustring OSLRenderServices::u_path_ray_depth("path:ray_depth");
ustring OSLRenderServices::u_path_transparent_depth("path:transparent_depth");
ustring OSLRenderServices::u_trace("trace");
ustring OSLRenderServices::u_hit("hit");
ustring OSLRenderServices::u_hitdist("hitdist");
ustring OSLRenderServices::u_N("N");
ustring OSLRenderServices::u_Ng("Ng");
ustring OSLRenderServices::u_P("P");
ustring OSLRenderServices::u_I("I");
ustring OSLRenderServices::u_u("u");
ustring OSLRenderServices::u_v("v");
ustring OSLRenderServices::u_empty;
OSLRenderServices::OSLRenderServices()
{
kernel_globals = NULL;
osl_ts = NULL;
#ifdef WITH_PTEX
size_t maxmem = 16384 * 1024;
ptex_cache = PtexCache::create(0, maxmem);
#endif
}
OSLRenderServices::~OSLRenderServices()
{
#ifdef WITH_PTEX
ptex_cache->release();
#endif
}
void OSLRenderServices::thread_init(KernelGlobals *kernel_globals_, OSL::TextureSystem *osl_ts_)
{
kernel_globals = kernel_globals_;
osl_ts = osl_ts_;
}
bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform, float time)
{
/* this is only used for shader and object space, we don't really have
* a concept of shader space, so we just use object space for both. */
if (xform) {
const ShaderData *sd = (const ShaderData *)xform;
KernelGlobals *kg = sd->osl_globals;
int object = sd->object;
if (object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
Transform tfm;
if(time == sd->time)
tfm = sd->ob_tfm;
else
tfm = object_fetch_transform_motion_test(kg, object, time, NULL);
#else
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
#endif
tfm = transform_transpose(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
}
return false;
}
bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform, float time)
{
/* this is only used for shader and object space, we don't really have
* a concept of shader space, so we just use object space for both. */
if (xform) {
const ShaderData *sd = (const ShaderData *)xform;
KernelGlobals *kg = sd->osl_globals;
int object = sd->object;
if (object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
Transform itfm;
if(time == sd->time)
itfm = sd->ob_itfm;
else
object_fetch_transform_motion_test(kg, object, time, &itfm);
#else
Transform itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
#endif
itfm = transform_transpose(itfm);
COPY_MATRIX44(&result, &itfm);
return true;
}
}
return false;
}
bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, ustring from, float time)
{
KernelGlobals *kg = kernel_globals;
if (from == u_ndc) {
Transform tfm = transform_transpose(transform_quick_inverse(kernel_data.cam.worldtondc));
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.rastertoworld);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.screentoworld);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.cameratoworld);
COPY_MATRIX44(&result, &tfm);
return true;
}
return false;
}
bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, ustring to, float time)
{
KernelGlobals *kg = kernel_globals;
if (to == u_ndc) {
Transform tfm = transform_transpose(kernel_data.cam.worldtondc);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoraster);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoscreen);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.worldtocamera);
COPY_MATRIX44(&result, &tfm);
return true;
}
return false;
}
bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform)
{
/* this is only used for shader and object space, we don't really have
* a concept of shader space, so we just use object space for both. */
if (xform) {
const ShaderData *sd = (const ShaderData *)xform;
int object = sd->object;
if (object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_tfm;
#else
KernelGlobals *kg = sd->osl_globals;
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
#endif
tfm = transform_transpose(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
}
return false;
}
bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform)
{
/* this is only used for shader and object space, we don't really have
* a concept of shader space, so we just use object space for both. */
if (xform) {
const ShaderData *sd = (const ShaderData *)xform;
int object = sd->object;
if (object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_itfm;
#else
KernelGlobals *kg = sd->osl_globals;
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
#endif
tfm = transform_transpose(tfm);
COPY_MATRIX44(&result, &tfm);
return true;
}
}
return false;
}
bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, ustring from)
{
KernelGlobals *kg = kernel_globals;
if (from == u_ndc) {
Transform tfm = transform_transpose(transform_quick_inverse(kernel_data.cam.worldtondc));
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.rastertoworld);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.screentoworld);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (from == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.cameratoworld);
COPY_MATRIX44(&result, &tfm);
return true;
}
return false;
}
bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, ustring to)
{
KernelGlobals *kg = kernel_globals;
if (to == u_ndc) {
Transform tfm = transform_transpose(kernel_data.cam.worldtondc);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoraster);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoscreen);
COPY_MATRIX44(&result, &tfm);
return true;
}
else if (to == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.worldtocamera);
COPY_MATRIX44(&result, &tfm);
return true;
}
return false;
}
bool OSLRenderServices::get_array_attribute(void *renderstate, bool derivatives,
ustring object, TypeDesc type, ustring name,
int index, void *val)
{
return false;
}
static bool set_attribute_float3(float3 f[3], TypeDesc type, bool derivatives, void *val)
{
if (type == TypeDesc::TypePoint || type == TypeDesc::TypeVector ||
type == TypeDesc::TypeNormal || type == TypeDesc::TypeColor)
{
float *fval = (float *)val;
fval[0] = f[0].x;
fval[1] = f[0].y;
fval[2] = f[0].z;
if (derivatives) {
fval[3] = f[1].x;
fval[4] = f[1].y;
fval[5] = f[1].z;
fval[6] = f[2].x;
fval[7] = f[2].y;
fval[8] = f[2].z;
}
return true;
}
else if(type == TypeDesc::TypeFloat) {
float *fval = (float *)val;
fval[0] = average(f[0]);
if (derivatives) {
fval[1] = average(f[1]);
fval[2] = average(f[2]);
}
return true;
}
return false;
}
static bool set_attribute_float3(float3 f, TypeDesc type, bool derivatives, void *val)
{
float3 fv[3];
fv[0] = f;
fv[1] = make_float3(0.0f, 0.0f, 0.0f);
fv[2] = make_float3(0.0f, 0.0f, 0.0f);
return set_attribute_float3(fv, type, derivatives, val);
}
static bool set_attribute_float(float f[3], TypeDesc type, bool derivatives, void *val)
{
if (type == TypeDesc::TypePoint || type == TypeDesc::TypeVector ||
type == TypeDesc::TypeNormal || type == TypeDesc::TypeColor)
{
float *fval = (float *)val;
fval[0] = f[0];
fval[1] = f[1];
fval[2] = f[2];
if (derivatives) {
fval[3] = f[1];
fval[4] = f[1];
fval[5] = f[1];
fval[6] = f[2];
fval[7] = f[2];
fval[8] = f[2];
}
return true;
}
else if(type == TypeDesc::TypeFloat) {
float *fval = (float *)val;
fval[0] = f[0];
if (derivatives) {
fval[1] = f[1];
fval[2] = f[2];
}
return true;
}
return false;
}
static bool set_attribute_float(float f, TypeDesc type, bool derivatives, void *val)
{
float fv[3];
fv[0] = f;
fv[1] = 0.0f;
fv[2] = 0.0f;
return set_attribute_float(fv, type, derivatives, val);
}
static bool set_attribute_int(int i, TypeDesc type, bool derivatives, void *val)
{
if(type.basetype == TypeDesc::INT && type.aggregate == TypeDesc::SCALAR && type.arraylen == 0) {
int *ival = (int *)val;
ival[0] = i;
if (derivatives) {
ival[1] = 0;
ival[2] = 0;
}
return true;
}
return false;
}
static bool set_attribute_string(ustring str, TypeDesc type, bool derivatives, void *val)
{
if(type.basetype == TypeDesc::INT && type.aggregate == TypeDesc::SCALAR && type.arraylen == 0) {
ustring *sval = (ustring *)val;
sval[0] = str;
if (derivatives) {
sval[1] = OSLRenderServices::u_empty;
sval[2] = OSLRenderServices::u_empty;
}
return true;
}
return false;
}
static bool set_attribute_float3_3(float3 P[3], TypeDesc type, bool derivatives, void *val)
{
if(type.vecsemantics == TypeDesc::POINT && type.arraylen >= 3) {
float *fval = (float *)val;
fval[0] = P[0].x;
fval[1] = P[0].y;
fval[2] = P[0].z;
fval[3] = P[1].x;
fval[4] = P[1].y;
fval[5] = P[1].z;
fval[6] = P[2].x;
fval[7] = P[2].y;
fval[8] = P[2].z;
if(type.arraylen > 3)
memset(fval + 3*3, 0, sizeof(float)*3*(type.arraylen - 3));
if (derivatives)
memset(fval + type.arraylen*3, 0, sizeof(float)*2*3*type.arraylen);
return true;
}
return false;
}
static bool set_attribute_matrix(const Transform& tfm, TypeDesc type, void *val)
{
if(type == TypeDesc::TypeMatrix) {
Transform transpose = transform_transpose(tfm);
memcpy(val, &transpose, sizeof(Transform));
return true;
}
return false;
}
static bool get_mesh_element_attribute(KernelGlobals *kg, const ShaderData *sd, const OSLGlobals::Attribute& attr,
const TypeDesc& type, bool derivatives, void *val)
{
if (attr.type == TypeDesc::TypePoint || attr.type == TypeDesc::TypeVector ||
attr.type == TypeDesc::TypeNormal || attr.type == TypeDesc::TypeColor) {
float3 fval[3];
fval[0] = primitive_attribute_float3(kg, sd, attr.elem, attr.offset,
(derivatives) ? &fval[1] : NULL, (derivatives) ? &fval[2] : NULL);
return set_attribute_float3(fval, type, derivatives, val);
}
else if (attr.type == TypeDesc::TypeFloat) {
float fval[3];
fval[0] = primitive_attribute_float(kg, sd, attr.elem, attr.offset,
(derivatives) ? &fval[1] : NULL, (derivatives) ? &fval[2] : NULL);
return set_attribute_float(fval, type, derivatives, val);
}
else {
return false;
}
}
static bool get_mesh_attribute(KernelGlobals *kg, const ShaderData *sd, const OSLGlobals::Attribute& attr,
const TypeDesc& type, bool derivatives, void *val)
{
if (attr.type == TypeDesc::TypeMatrix) {
Transform tfm = primitive_attribute_matrix(kg, sd, attr.offset);
return set_attribute_matrix(tfm, type, val);
}
else {
return false;
}
}
static void get_object_attribute(const OSLGlobals::Attribute& attr, bool derivatives, void *val)
{
size_t datasize = attr.value.datasize();
memcpy(val, attr.value.data(), datasize);
if (derivatives)
memset((char *)val + datasize, 0, datasize * 2);
}
bool OSLRenderServices::get_object_standard_attribute(KernelGlobals *kg, ShaderData *sd, ustring name,
TypeDesc type, bool derivatives, void *val)
{
/* todo: turn this into hash table? */
/* Object Attributes */
if (name == u_object_location) {
float3 f = object_location(kg, sd);
return set_attribute_float3(f, type, derivatives, val);
}
else if (name == u_object_index) {
float f = object_pass_id(kg, sd->object);
return set_attribute_float(f, type, derivatives, val);
}
else if (name == u_geom_dupli_generated) {
float3 f = object_dupli_generated(kg, sd->object);
return set_attribute_float3(f, type, derivatives, val);
}
else if (name == u_geom_dupli_uv) {
float3 f = object_dupli_uv(kg, sd->object);
return set_attribute_float3(f, type, derivatives, val);
}
else if (name == u_material_index) {
float f = shader_pass_id(kg, sd);
return set_attribute_float(f, type, derivatives, val);
}
else if (name == u_object_random) {
float f = object_random_number(kg, sd->object);
return set_attribute_float(f, type, derivatives, val);
}
/* Particle Attributes */
else if (name == u_particle_index) {
uint particle_id = object_particle_id(kg, sd->object);
float f = particle_index(kg, particle_id);
return set_attribute_float(f, type, derivatives, val);
}
else if (name == u_particle_age) {
uint particle_id = object_particle_id(kg, sd->object);
float f = particle_age(kg, particle_id);
return set_attribute_float(f, type, derivatives, val);
}
else if (name == u_particle_lifetime) {
uint particle_id = object_particle_id(kg, sd->object);
float f= particle_lifetime(kg, particle_id);
return set_attribute_float(f, type, derivatives, val);
}
else if (name == u_particle_location) {
uint particle_id = object_particle_id(kg, sd->object);
float3 f = particle_location(kg, particle_id);
return set_attribute_float3(f, type, derivatives, val);
}
#if 0 /* unsupported */
else if (name == u_particle_rotation) {
uint particle_id = object_particle_id(kg, sd->object);
float4 f = particle_rotation(kg, particle_id);
return set_attribute_float4(f, type, derivatives, val);
}
#endif
else if (name == u_particle_size) {
uint particle_id = object_particle_id(kg, sd->object);
float f = particle_size(kg, particle_id);
return set_attribute_float(f, type, derivatives, val);
}
else if (name == u_particle_velocity) {
uint particle_id = object_particle_id(kg, sd->object);
float3 f = particle_velocity(kg, particle_id);
return set_attribute_float3(f, type, derivatives, val);
}
else if (name == u_particle_angular_velocity) {
uint particle_id = object_particle_id(kg, sd->object);
float3 f = particle_angular_velocity(kg, particle_id);
return set_attribute_float3(f, type, derivatives, val);
}
/* Geometry Attributes */
else if (name == u_geom_numpolyvertices) {
return set_attribute_int(3, type, derivatives, val);
}
else if ((name == u_geom_trianglevertices || name == u_geom_polyvertices)
#ifdef __HAIR__
&& sd->type & PRIMITIVE_ALL_TRIANGLE) {
#else
) {
#endif
float3 P[3];
if(sd->type & PRIMITIVE_TRIANGLE)
triangle_vertices(kg, sd->prim, P);
else
motion_triangle_vertices(kg, sd->object, sd->prim, sd->time, P);
if(!(sd->flag & SD_TRANSFORM_APPLIED)) {
object_position_transform(kg, sd, &P[0]);
object_position_transform(kg, sd, &P[1]);
object_position_transform(kg, sd, &P[2]);
}
return set_attribute_float3_3(P, type, derivatives, val);
}
else if(name == u_geom_name) {
ustring object_name = kg->osl->object_names[sd->object];
return set_attribute_string(object_name, type, derivatives, val);
}
else if (name == u_is_smooth) {
float f = ((sd->shader & SHADER_SMOOTH_NORMAL) != 0);
return set_attribute_float(f, type, derivatives, val);
}
#ifdef __HAIR__
/* Hair Attributes */
else if (name == u_is_curve) {
float f = (sd->type & PRIMITIVE_ALL_CURVE) != 0;
return set_attribute_float(f, type, derivatives, val);
}
else if (name == u_curve_thickness) {
float f = curve_thickness(kg, sd);
return set_attribute_float(f, type, derivatives, val);
}
else if (name == u_curve_tangent_normal) {
float3 f = curve_tangent_normal(kg, sd);
return set_attribute_float3(f, type, derivatives, val);
}
#endif
else
return false;
}
bool OSLRenderServices::get_background_attribute(KernelGlobals *kg, ShaderData *sd, ustring name,
TypeDesc type, bool derivatives, void *val)
{
if (name == u_path_ray_length) {
/* Ray Length */
float f = sd->ray_length;
return set_attribute_float(f, type, derivatives, val);
}
else if (name == u_path_ray_depth) {
/* Ray Depth */
int f = sd->ray_depth;
return set_attribute_int(f, type, derivatives, val);
}
else if (name == u_path_transparent_depth) {
/* Ray Depth */
int f = sd->transparent_depth;
return set_attribute_int(f, type, derivatives, val);
}
else if (name == u_ndc) {
/* NDC coordinates with special exception for otho */
OSLThreadData *tdata = kg->osl_tdata;
OSL::ShaderGlobals *globals = &tdata->globals;
float3 ndc[3];
if((globals->raytype & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
ndc[0] = camera_world_to_ndc(kg, sd, sd->ray_P);
if(derivatives) {
ndc[1] = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dx) - ndc[0];
ndc[2] = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dy) - ndc[0];
}
}
else {
ndc[0] = camera_world_to_ndc(kg, sd, sd->P);
if(derivatives) {
ndc[1] = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dx) - ndc[0];
ndc[2] = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dy) - ndc[0];
}
}
return set_attribute_float3(ndc, type, derivatives, val);
}
else
return false;
}
bool OSLRenderServices::get_attribute(void *renderstate, bool derivatives, ustring object_name,
TypeDesc type, ustring name, void *val)
{
ShaderData *sd = (ShaderData *)renderstate;
KernelGlobals *kg = sd->osl_globals;
bool is_curve;
int object, prim;
/* lookup of attribute on another object */
if (object_name != u_empty) {
OSLGlobals::ObjectNameMap::iterator it = kg->osl->object_name_map.find(object_name);
if (it == kg->osl->object_name_map.end())
return false;
object = it->second;
prim = PRIM_NONE;
is_curve = false;
}
else {
object = sd->object;
prim = sd->prim;
is_curve = (sd->type & PRIMITIVE_ALL_CURVE) != 0;
if (object == OBJECT_NONE)
return get_background_attribute(kg, sd, name, type, derivatives, val);
}
/* find attribute on object */
object = object*ATTR_PRIM_TYPES + (is_curve == true);
OSLGlobals::AttributeMap& attribute_map = kg->osl->attribute_map[object];
OSLGlobals::AttributeMap::iterator it = attribute_map.find(name);
if (it != attribute_map.end()) {
const OSLGlobals::Attribute& attr = it->second;
if (attr.elem != ATTR_ELEMENT_OBJECT) {
/* triangle and vertex attributes */
if(!get_mesh_element_attribute(kg, sd, attr, type, derivatives, val))
return get_mesh_attribute(kg, sd, attr, type, derivatives, val);
}
else {
/* object attribute */
get_object_attribute(attr, derivatives, val);
return true;
}
}
else {
/* not found in attribute, check standard object info */
bool is_std_object_attribute = get_object_standard_attribute(kg, sd, name, type, derivatives, val);
if (is_std_object_attribute)
return true;
return get_background_attribute(kg, sd, name, type, derivatives, val);
}
return false;
}
bool OSLRenderServices::get_userdata(bool derivatives, ustring name, TypeDesc type,
void *renderstate, void *val)
{
return false; /* disabled by lockgeom */
}
bool OSLRenderServices::has_userdata(ustring name, TypeDesc type, void *renderstate)
{
return false; /* never called by OSL */
}
bool OSLRenderServices::texture(ustring filename, TextureOpt &options,
OSL::ShaderGlobals *sg,
float s, float t, float dsdx, float dtdx,
float dsdy, float dtdy, float *result)
{
OSL::TextureSystem *ts = osl_ts;
ShaderData *sd = (ShaderData *)(sg->renderstate);
KernelGlobals *kg = sd->osl_globals;
#ifdef WITH_PTEX
/* todo: this is just a quick hack, only works with particular files and options */
if(string_endswith(filename.string(), ".ptx")) {
float2 uv;
int faceid;
if(!primitive_ptex(kg, sd, &uv, &faceid))
return false;
float u = uv.x;
float v = uv.y;
float dudx = 0.0f;
float dvdx = 0.0f;
float dudy = 0.0f;
float dvdy = 0.0f;
Ptex::String error;
PtexPtr<PtexTexture> r(ptex_cache->get(filename.c_str(), error));
if(!r) {
//std::cerr << error.c_str() << std::endl;
return false;
}
bool mipmaplerp = false;
float sharpness = 1.0f;
PtexFilter::Options opts(PtexFilter::f_bicubic, mipmaplerp, sharpness);
PtexPtr<PtexFilter> f(PtexFilter::getFilter(r, opts));
f->eval(result, options.firstchannel, options.nchannels, faceid, u, v, dudx, dvdx, dudy, dvdy);
for(int c = r->numChannels(); c < options.nchannels; c++)
result[c] = result[0];
return true;
}
#endif
OSLThreadData *tdata = kg->osl_tdata;
OIIO::TextureSystem::Perthread *thread_info = tdata->oiio_thread_info;
OIIO::TextureSystem::TextureHandle *th = ts->get_texture_handle(filename, thread_info);
bool status = ts->texture(th, thread_info,
options, s, t, dsdx, dtdx, dsdy, dtdy, result);
if(!status) {
if(options.nchannels == 3 || options.nchannels == 4) {
result[0] = 1.0f;
result[1] = 0.0f;
result[2] = 1.0f;
if(options.nchannels == 4)
result[3] = 1.0f;
}
}
return status;
}
bool OSLRenderServices::texture3d(ustring filename, TextureOpt &options,
OSL::ShaderGlobals *sg, const OSL::Vec3 &P,
const OSL::Vec3 &dPdx, const OSL::Vec3 &dPdy,
const OSL::Vec3 &dPdz, float *result)
{
OSL::TextureSystem *ts = osl_ts;
ShaderData *sd = (ShaderData *)(sg->renderstate);
KernelGlobals *kg = sd->osl_globals;
OSLThreadData *tdata = kg->osl_tdata;
OIIO::TextureSystem::Perthread *thread_info = tdata->oiio_thread_info;
OIIO::TextureSystem::TextureHandle *th = ts->get_texture_handle(filename, thread_info);
bool status = ts->texture3d(th, thread_info,
options, P, dPdx, dPdy, dPdz, result);
if(!status) {
if(options.nchannels == 3 || options.nchannels == 4) {
result[0] = 1.0f;
result[1] = 0.0f;
result[2] = 1.0f;
if(options.nchannels == 4)
result[3] = 1.0f;
}
}
return status;
}
bool OSLRenderServices::environment(ustring filename, TextureOpt &options,
OSL::ShaderGlobals *sg, const OSL::Vec3 &R,
const OSL::Vec3 &dRdx, const OSL::Vec3 &dRdy, float *result)
{
OSL::TextureSystem *ts = osl_ts;
ShaderData *sd = (ShaderData *)(sg->renderstate);
KernelGlobals *kg = sd->osl_globals;
OSLThreadData *tdata = kg->osl_tdata;
OIIO::TextureSystem::Perthread *thread_info = tdata->oiio_thread_info;
OIIO::TextureSystem::TextureHandle *th = ts->get_texture_handle(filename, thread_info);
bool status = ts->environment(th, thread_info,
options, R, dRdx, dRdy, result);
if(!status) {
if(options.nchannels == 3 || options.nchannels == 4) {
result[0] = 1.0f;
result[1] = 0.0f;
result[2] = 1.0f;
if(options.nchannels == 4)
result[3] = 1.0f;
}
}
return status;
}
bool OSLRenderServices::get_texture_info(ustring filename, int subimage,
ustring dataname,
TypeDesc datatype, void *data)
{
OSL::TextureSystem *ts = osl_ts;
return ts->get_texture_info(filename, subimage, dataname, datatype, data);
}
int OSLRenderServices::pointcloud_search(OSL::ShaderGlobals *sg, ustring filename, const OSL::Vec3 &center,
float radius, int max_points, bool sort,
size_t *out_indices, float *out_distances, int derivs_offset)
{
return 0;
}
int OSLRenderServices::pointcloud_get(OSL::ShaderGlobals *sg, ustring filename, size_t *indices, int count,
ustring attr_name, TypeDesc attr_type, void *out_data)
{
return 0;
}
bool OSLRenderServices::pointcloud_write(OSL::ShaderGlobals *sg,
ustring filename, const OSL::Vec3 &pos,
int nattribs, const ustring *names,
const TypeDesc *types,
const void **data)
{
return false;
}
bool OSLRenderServices::trace(TraceOpt &options, OSL::ShaderGlobals *sg,
const OSL::Vec3 &P, const OSL::Vec3 &dPdx,
const OSL::Vec3 &dPdy, const OSL::Vec3 &R,
const OSL::Vec3 &dRdx, const OSL::Vec3 &dRdy)
{
/* todo: options.shader support, maybe options.traceset */
ShaderData *sd = (ShaderData *)(sg->renderstate);
/* setup ray */
Ray ray;
ray.P = TO_FLOAT3(P);
ray.D = TO_FLOAT3(R);
ray.t = (options.maxdist == 1.0e30)? FLT_MAX: options.maxdist - options.mindist;
ray.time = sd->time;
if(options.mindist == 0.0f) {
/* avoid self-intersections */
if(ray.P == sd->P) {
bool transmit = (dot(sd->Ng, ray.D) < 0.0f);
ray.P = ray_offset(sd->P, (transmit)? -sd->Ng: sd->Ng);
}
}
else {
/* offset for minimum distance */
ray.P += options.mindist*ray.D;
}
/* ray differentials */
ray.dP.dx = TO_FLOAT3(dPdx);
ray.dP.dy = TO_FLOAT3(dPdy);
ray.dD.dx = TO_FLOAT3(dRdx);
ray.dD.dy = TO_FLOAT3(dRdy);
/* allocate trace data */
OSLTraceData *tracedata = (OSLTraceData*)sg->tracedata;
tracedata->ray = ray;
tracedata->setup = false;
tracedata->init = true;
tracedata->sd.osl_globals = sd->osl_globals;
/* raytrace */
#ifdef __HAIR__
return scene_intersect(sd->osl_globals, &ray, PATH_RAY_ALL_VISIBILITY, &tracedata->isect, NULL, 0.0f, 0.0f);
#else
return scene_intersect(sd->osl_globals, &ray, PATH_RAY_ALL_VISIBILITY, &tracedata->isect);
#endif
}
bool OSLRenderServices::getmessage(OSL::ShaderGlobals *sg, ustring source, ustring name,
TypeDesc type, void *val, bool derivatives)
{
OSLTraceData *tracedata = (OSLTraceData*)sg->tracedata;
if(source == u_trace && tracedata->init) {
if(name == u_hit) {
return set_attribute_int((tracedata->isect.prim != PRIM_NONE), type, derivatives, val);
}
else if(tracedata->isect.prim != PRIM_NONE) {
if(name == u_hitdist) {
float f[3] = {tracedata->isect.t, 0.0f, 0.0f};
return set_attribute_float(f, type, derivatives, val);
}
else {
ShaderData *sd = &tracedata->sd;
KernelGlobals *kg = sd->osl_globals;
if(!tracedata->setup) {
/* lazy shader data setup */
ShaderData *original_sd = (ShaderData *)(sg->renderstate);
int bounce = original_sd->ray_depth + 1;
int transparent_bounce = original_sd->transparent_depth;
shader_setup_from_ray(kg, sd, &tracedata->isect, &tracedata->ray, bounce, transparent_bounce);
tracedata->setup = true;
}
if(name == u_N) {
return set_attribute_float3(sd->N, type, derivatives, val);
}
else if(name == u_Ng) {
return set_attribute_float3(sd->Ng, type, derivatives, val);
}
else if(name == u_P) {
float3 f[3] = {sd->P, sd->dP.dx, sd->dP.dy};
return set_attribute_float3(f, type, derivatives, val);
}
else if(name == u_I) {
float3 f[3] = {sd->I, sd->dI.dx, sd->dI.dy};
return set_attribute_float3(f, type, derivatives, val);
}
else if(name == u_u) {
float f[3] = {sd->u, sd->du.dx, sd->du.dy};
return set_attribute_float(f, type, derivatives, val);
}
else if(name == u_v) {
float f[3] = {sd->v, sd->dv.dx, sd->dv.dy};
return set_attribute_float(f, type, derivatives, val);
}
return get_attribute(sd, derivatives, u_empty, type, name, val);
}
}
}
return false;
}
CCL_NAMESPACE_END