blender/intern/cycles/render/image.cpp
Kévin Dietrich 7377d411b4 Cycles volume: fast empty space optimization by generating a tight mesh
around the volume.

We generate a tight mesh around the active voxels of the volume in order
to effectively skip empty space, and start volume ray marching as close
to interesting volume data as possible. See code comments for details on
how the mesh generation algorithm works.

This gives up to 2x speedups in some scenes.

Reviewed by: brecht, dingto

Reviewers: #cycles

Subscribers: lvxejay, jtheninja, brecht

Differential Revision: https://developer.blender.org/D3038
2018-03-01 11:54:01 +01:00

968 lines
27 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device/device.h"
#include "render/image.h"
#include "render/scene.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_path.h"
#include "util/util_progress.h"
#include "util/util_texture.h"
#ifdef WITH_OSL
#include <OSL/oslexec.h>
#endif
CCL_NAMESPACE_BEGIN
/* Some helpers to silence warning in templated function. */
static bool isfinite(uchar /*value*/)
{
return false;
}
static bool isfinite(half /*value*/)
{
return false;
}
ImageManager::ImageManager(const DeviceInfo& info)
{
need_update = true;
osl_texture_system = NULL;
animation_frame = 0;
/* Set image limits */
max_num_images = TEX_NUM_MAX;
has_half_images = info.has_half_images;
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
tex_num_images[type] = 0;
}
}
ImageManager::~ImageManager()
{
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++)
assert(!images[type][slot]);
}
}
void ImageManager::set_osl_texture_system(void *texture_system)
{
osl_texture_system = texture_system;
}
bool ImageManager::set_animation_frame_update(int frame)
{
if(frame != animation_frame) {
animation_frame = frame;
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && images[type][slot]->animated)
return true;
}
}
}
return false;
}
device_memory *ImageManager::image_memory(int flat_slot)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *img = images[type][slot];
return img->mem;
}
bool ImageManager::get_image_metadata(const string& filename,
void *builtin_data,
ImageMetaData& metadata)
{
memset(&metadata, 0, sizeof(metadata));
if(builtin_data) {
if(builtin_image_info_cb) {
builtin_image_info_cb(filename, builtin_data, metadata);
}
else {
return false;
}
if(metadata.is_float) {
metadata.is_linear = true;
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_FLOAT4 : IMAGE_DATA_TYPE_FLOAT;
}
else {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_BYTE4 : IMAGE_DATA_TYPE_BYTE;
}
return true;
}
/* Perform preliminary checks, with meaningful logging. */
if(!path_exists(filename)) {
VLOG(1) << "File '" << filename << "' does not exist.";
return false;
}
if(path_is_directory(filename)) {
VLOG(1) << "File '" << filename << "' is a directory, can't use as image.";
return false;
}
ImageInput *in = ImageInput::create(filename);
if(!in) {
return false;
}
ImageSpec spec;
if(!in->open(filename, spec)) {
delete in;
return false;
}
metadata.width = spec.width;
metadata.height = spec.height;
metadata.depth = spec.depth;
/* check the main format, and channel formats;
* if any take up more than one byte, we'll need a float texture slot */
if(spec.format.basesize() > 1) {
metadata.is_float = true;
metadata.is_linear = true;
}
for(size_t channel = 0; channel < spec.channelformats.size(); channel++) {
if(spec.channelformats[channel].basesize() > 1) {
metadata.is_float = true;
metadata.is_linear = true;
}
}
/* check if it's half float */
if(spec.format == TypeDesc::HALF)
metadata.is_half = true;
/* basic color space detection, not great but better than nothing
* before we do OpenColorIO integration */
if(metadata.is_float) {
string colorspace = spec.get_string_attribute("oiio:ColorSpace");
metadata.is_linear = !(colorspace == "sRGB" ||
colorspace == "GammaCorrected" ||
(colorspace == "" &&
(strcmp(in->format_name(), "png") == 0 ||
strcmp(in->format_name(), "tiff") == 0 ||
strcmp(in->format_name(), "dpx") == 0 ||
strcmp(in->format_name(), "jpeg2000") == 0)));
}
else {
metadata.is_linear = false;
}
/* set type and channels */
metadata.channels = spec.nchannels;
if(metadata.is_half) {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_HALF4 : IMAGE_DATA_TYPE_HALF;
}
else if(metadata.is_float) {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_FLOAT4 : IMAGE_DATA_TYPE_FLOAT;
}
else {
metadata.type = (metadata.channels > 1) ? IMAGE_DATA_TYPE_BYTE4 : IMAGE_DATA_TYPE_BYTE;
}
in->close();
delete in;
return true;
}
int ImageManager::max_flattened_slot(ImageDataType type)
{
if(tex_num_images[type] == 0) {
/* No textures for the type, no slots needs allocation. */
return 0;
}
return type_index_to_flattened_slot(tex_num_images[type], type);
}
/* The lower three bits of a device texture slot number indicate its type.
* These functions convert the slot ids from ImageManager "images" ones
* to device ones and vice verse.
*/
int ImageManager::type_index_to_flattened_slot(int slot, ImageDataType type)
{
return (slot << IMAGE_DATA_TYPE_SHIFT) | (type);
}
int ImageManager::flattened_slot_to_type_index(int flat_slot, ImageDataType *type)
{
*type = (ImageDataType)(flat_slot & IMAGE_DATA_TYPE_MASK);
return flat_slot >> IMAGE_DATA_TYPE_SHIFT;
}
string ImageManager::name_from_type(int type)
{
if(type == IMAGE_DATA_TYPE_FLOAT4)
return "float4";
else if(type == IMAGE_DATA_TYPE_FLOAT)
return "float";
else if(type == IMAGE_DATA_TYPE_BYTE)
return "byte";
else if(type == IMAGE_DATA_TYPE_HALF4)
return "half4";
else if(type == IMAGE_DATA_TYPE_HALF)
return "half";
else
return "byte4";
}
static bool image_equals(ImageManager::Image *image,
const string& filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha)
{
return image->filename == filename &&
image->builtin_data == builtin_data &&
image->interpolation == interpolation &&
image->extension == extension &&
image->use_alpha == use_alpha;
}
int ImageManager::add_image(const string& filename,
void *builtin_data,
bool animated,
float frame,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha,
ImageMetaData& metadata)
{
Image *img;
size_t slot;
get_image_metadata(filename, builtin_data, metadata);
ImageDataType type = metadata.type;
thread_scoped_lock device_lock(device_mutex);
/* No half textures on OpenCL, use full float instead. */
if(!has_half_images) {
if(type == IMAGE_DATA_TYPE_HALF4) {
type = IMAGE_DATA_TYPE_FLOAT4;
}
else if(type == IMAGE_DATA_TYPE_HALF) {
type = IMAGE_DATA_TYPE_FLOAT;
}
}
/* Fnd existing image. */
for(slot = 0; slot < images[type].size(); slot++) {
img = images[type][slot];
if(img && image_equals(img,
filename,
builtin_data,
interpolation,
extension,
use_alpha))
{
if(img->frame != frame) {
img->frame = frame;
img->need_load = true;
}
if(img->use_alpha != use_alpha) {
img->use_alpha = use_alpha;
img->need_load = true;
}
img->users++;
return type_index_to_flattened_slot(slot, type);
}
}
/* Find free slot. */
for(slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
break;
}
/* Count if we're over the limit.
* Very unlikely, since max_num_images is insanely big. But better safe than sorry. */
int tex_count = 0;
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
tex_count += tex_num_images[type];
}
if(tex_count > max_num_images) {
printf("ImageManager::add_image: Reached image limit (%d), skipping '%s'\n",
max_num_images, filename.c_str());
return -1;
}
if(slot == images[type].size()) {
images[type].resize(images[type].size() + 1);
}
/* Add new image. */
img = new Image();
img->filename = filename;
img->builtin_data = builtin_data;
img->builtin_free_cache = metadata.builtin_free_cache;
img->need_load = true;
img->animated = animated;
img->frame = frame;
img->interpolation = interpolation;
img->extension = extension;
img->users = 1;
img->use_alpha = use_alpha;
img->mem = NULL;
images[type][slot] = img;
++tex_num_images[type];
need_update = true;
return type_index_to_flattened_slot(slot, type);
}
void ImageManager::remove_image(int flat_slot)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *image = images[type][slot];
assert(image && image->users >= 1);
/* decrement user count */
image->users--;
/* don't remove immediately, rather do it all together later on. one of
* the reasons for this is that on shader changes we add and remove nodes
* that use them, but we do not want to reload the image all the time. */
if(image->users == 0)
need_update = true;
}
void ImageManager::remove_image(const string& filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha)
{
size_t slot;
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && image_equals(images[type][slot],
filename,
builtin_data,
interpolation,
extension,
use_alpha))
{
remove_image(type_index_to_flattened_slot(slot, (ImageDataType)type));
return;
}
}
}
}
/* TODO(sergey): Deduplicate with the iteration above, but make it pretty,
* without bunch of arguments passing around making code readability even
* more cluttered.
*/
void ImageManager::tag_reload_image(const string& filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha)
{
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && image_equals(images[type][slot],
filename,
builtin_data,
interpolation,
extension,
use_alpha))
{
images[type][slot]->need_load = true;
break;
}
}
}
}
bool ImageManager::file_load_image_generic(Image *img,
ImageInput **in,
int &width,
int &height,
int &depth,
int &components)
{
if(img->filename == "")
return false;
if(!img->builtin_data) {
/* NOTE: Error logging is done in meta data acquisition. */
if(!path_exists(img->filename) || path_is_directory(img->filename)) {
return false;
}
/* load image from file through OIIO */
*in = ImageInput::create(img->filename);
if(!*in)
return false;
ImageSpec spec = ImageSpec();
ImageSpec config = ImageSpec();
if(img->use_alpha == false)
config.attribute("oiio:UnassociatedAlpha", 1);
if(!(*in)->open(img->filename, spec, config)) {
delete *in;
*in = NULL;
return false;
}
width = spec.width;
height = spec.height;
depth = spec.depth;
components = spec.nchannels;
}
else {
/* load image using builtin images callbacks */
if(!builtin_image_info_cb || !builtin_image_pixels_cb)
return false;
ImageMetaData metadata;
builtin_image_info_cb(img->filename, img->builtin_data, metadata);
width = metadata.width;
height = metadata.height;
depth = metadata.depth;
components = metadata.channels;
}
/* we only handle certain number of components */
if(!(components >= 1 && components <= 4)) {
if(*in) {
(*in)->close();
delete *in;
*in = NULL;
}
return false;
}
return true;
}
template<TypeDesc::BASETYPE FileFormat,
typename StorageType,
typename DeviceType>
bool ImageManager::file_load_image(Image *img,
ImageDataType type,
int texture_limit,
device_vector<DeviceType>& tex_img)
{
const StorageType alpha_one = (FileFormat == TypeDesc::UINT8)? 255 : 1;
ImageInput *in = NULL;
int width, height, depth, components;
if(!file_load_image_generic(img, &in, width, height, depth, components)) {
return false;
}
/* Read RGBA pixels. */
vector<StorageType> pixels_storage;
StorageType *pixels;
const size_t max_size = max(max(width, height), depth);
if(max_size == 0) {
/* Don't bother with invalid images. */
return false;
}
if(texture_limit > 0 && max_size > texture_limit) {
pixels_storage.resize(((size_t)width)*height*depth*4);
pixels = &pixels_storage[0];
}
else {
thread_scoped_lock device_lock(device_mutex);
pixels = (StorageType*)tex_img.alloc(width, height, depth);
}
if(pixels == NULL) {
/* Could be that we've run out of memory. */
return false;
}
bool cmyk = false;
const size_t num_pixels = ((size_t)width) * height * depth;
if(in) {
StorageType *readpixels = pixels;
vector<StorageType> tmppixels;
if(components > 4) {
tmppixels.resize(((size_t)width)*height*components);
readpixels = &tmppixels[0];
}
if(depth <= 1) {
size_t scanlinesize = ((size_t)width)*components*sizeof(StorageType);
in->read_image(FileFormat,
(uchar*)readpixels + (height-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
}
else {
in->read_image(FileFormat, (uchar*)readpixels);
}
if(components > 4) {
size_t dimensions = ((size_t)width)*height;
for(size_t i = dimensions-1, pixel = 0; pixel < dimensions; pixel++, i--) {
pixels[i*4+3] = tmppixels[i*components+3];
pixels[i*4+2] = tmppixels[i*components+2];
pixels[i*4+1] = tmppixels[i*components+1];
pixels[i*4+0] = tmppixels[i*components+0];
}
tmppixels.clear();
}
cmyk = strcmp(in->format_name(), "jpeg") == 0 && components == 4;
in->close();
delete in;
}
else {
if(FileFormat == TypeDesc::FLOAT) {
builtin_image_float_pixels_cb(img->filename,
img->builtin_data,
(float*)&pixels[0],
num_pixels * components,
img->builtin_free_cache);
}
else if(FileFormat == TypeDesc::UINT8) {
builtin_image_pixels_cb(img->filename,
img->builtin_data,
(uchar*)&pixels[0],
num_pixels * components,
img->builtin_free_cache);
}
else {
/* TODO(dingto): Support half for ImBuf. */
}
}
/* Check if we actually have a float4 slot, in case components == 1,
* but device doesn't support single channel textures.
*/
bool is_rgba = (type == IMAGE_DATA_TYPE_FLOAT4 ||
type == IMAGE_DATA_TYPE_HALF4 ||
type == IMAGE_DATA_TYPE_BYTE4);
if(is_rgba) {
if(cmyk) {
/* CMYK */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+2] = (pixels[i*4+2]*pixels[i*4+3])/255;
pixels[i*4+1] = (pixels[i*4+1]*pixels[i*4+3])/255;
pixels[i*4+0] = (pixels[i*4+0]*pixels[i*4+3])/255;
pixels[i*4+3] = alpha_one;
}
}
else if(components == 2) {
/* grayscale + alpha */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = pixels[i*2+1];
pixels[i*4+2] = pixels[i*2+0];
pixels[i*4+1] = pixels[i*2+0];
pixels[i*4+0] = pixels[i*2+0];
}
}
else if(components == 3) {
/* RGB */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = alpha_one;
pixels[i*4+2] = pixels[i*3+2];
pixels[i*4+1] = pixels[i*3+1];
pixels[i*4+0] = pixels[i*3+0];
}
}
else if(components == 1) {
/* grayscale */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = alpha_one;
pixels[i*4+2] = pixels[i];
pixels[i*4+1] = pixels[i];
pixels[i*4+0] = pixels[i];
}
}
if(img->use_alpha == false) {
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = alpha_one;
}
}
}
/* Make sure we don't have buggy values. */
if(FileFormat == TypeDesc::FLOAT) {
/* For RGBA buffers we put all channels to 0 if either of them is not
* finite. This way we avoid possible artifacts caused by fully changed
* hue.
*/
if(is_rgba) {
for(size_t i = 0; i < num_pixels; i += 4) {
StorageType *pixel = &pixels[i*4];
if(!isfinite(pixel[0]) ||
!isfinite(pixel[1]) ||
!isfinite(pixel[2]) ||
!isfinite(pixel[3]))
{
pixel[0] = 0;
pixel[1] = 0;
pixel[2] = 0;
pixel[3] = 0;
}
}
}
else {
for(size_t i = 0; i < num_pixels; ++i) {
StorageType *pixel = &pixels[i];
if(!isfinite(pixel[0])) {
pixel[0] = 0;
}
}
}
}
/* Scale image down if needed. */
if(pixels_storage.size() > 0) {
float scale_factor = 1.0f;
while(max_size * scale_factor > texture_limit) {
scale_factor *= 0.5f;
}
VLOG(1) << "Scaling image " << img->filename
<< " by a factor of " << scale_factor << ".";
vector<StorageType> scaled_pixels;
size_t scaled_width, scaled_height, scaled_depth;
util_image_resize_pixels(pixels_storage,
width, height, depth,
is_rgba ? 4 : 1,
scale_factor,
&scaled_pixels,
&scaled_width, &scaled_height, &scaled_depth);
StorageType *texture_pixels;
{
thread_scoped_lock device_lock(device_mutex);
texture_pixels = (StorageType*)tex_img.alloc(scaled_width,
scaled_height,
scaled_depth);
}
memcpy(texture_pixels,
&scaled_pixels[0],
scaled_pixels.size() * sizeof(StorageType));
}
return true;
}
void ImageManager::device_load_image(Device *device,
Scene *scene,
ImageDataType type,
int slot,
Progress *progress)
{
if(progress->get_cancel())
return;
Image *img = images[type][slot];
if(osl_texture_system && !img->builtin_data)
return;
string filename = path_filename(images[type][slot]->filename);
progress->set_status("Updating Images", "Loading " + filename);
const int texture_limit = scene->params.texture_limit;
/* Slot assignment */
int flat_slot = type_index_to_flattened_slot(slot, type);
img->mem_name = string_printf("__tex_image_%s_%03d", name_from_type(type).c_str(), flat_slot);
/* Free previous texture in slot. */
if(img->mem) {
thread_scoped_lock device_lock(device_mutex);
delete img->mem;
img->mem = NULL;
}
/* Create new texture. */
if(type == IMAGE_DATA_TYPE_FLOAT4) {
device_vector<float4> *tex_img
= new device_vector<float4>(device, img->mem_name.c_str(), MEM_TEXTURE);
if(!file_load_image<TypeDesc::FLOAT, float>(img,
type,
texture_limit,
*tex_img))
{
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
float *pixels = (float*)tex_img->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if(type == IMAGE_DATA_TYPE_FLOAT) {
device_vector<float> *tex_img
= new device_vector<float>(device, img->mem_name.c_str(), MEM_TEXTURE);
if(!file_load_image<TypeDesc::FLOAT, float>(img,
type,
texture_limit,
*tex_img))
{
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
float *pixels = (float*)tex_img->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if(type == IMAGE_DATA_TYPE_BYTE4) {
device_vector<uchar4> *tex_img
= new device_vector<uchar4>(device, img->mem_name.c_str(), MEM_TEXTURE);
if(!file_load_image<TypeDesc::UINT8, uchar>(img,
type,
texture_limit,
*tex_img))
{
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uchar *pixels = (uchar*)tex_img->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
pixels[1] = (TEX_IMAGE_MISSING_G * 255);
pixels[2] = (TEX_IMAGE_MISSING_B * 255);
pixels[3] = (TEX_IMAGE_MISSING_A * 255);
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if(type == IMAGE_DATA_TYPE_BYTE) {
device_vector<uchar> *tex_img
= new device_vector<uchar>(device, img->mem_name.c_str(), MEM_TEXTURE);
if(!file_load_image<TypeDesc::UINT8, uchar>(img,
type,
texture_limit,
*tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uchar *pixels = (uchar*)tex_img->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if(type == IMAGE_DATA_TYPE_HALF4) {
device_vector<half4> *tex_img
= new device_vector<half4>(device, img->mem_name.c_str(), MEM_TEXTURE);
if(!file_load_image<TypeDesc::HALF, half>(img,
type,
texture_limit,
*tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
half *pixels = (half*)tex_img->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
else if(type == IMAGE_DATA_TYPE_HALF) {
device_vector<half> *tex_img
= new device_vector<half>(device, img->mem_name.c_str(), MEM_TEXTURE);
if(!file_load_image<TypeDesc::HALF, half>(img,
type,
texture_limit,
*tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
half *pixels = (half*)tex_img->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
}
img->mem = tex_img;
img->mem->interpolation = img->interpolation;
img->mem->extension = img->extension;
thread_scoped_lock device_lock(device_mutex);
tex_img->copy_to_device();
}
img->need_load = false;
}
void ImageManager::device_free_image(Device *, ImageDataType type, int slot)
{
Image *img = images[type][slot];
if(img) {
if(osl_texture_system && !img->builtin_data) {
#ifdef WITH_OSL
ustring filename(images[type][slot]->filename);
((OSL::TextureSystem*)osl_texture_system)->invalidate(filename);
#endif
}
if(img->mem) {
thread_scoped_lock device_lock(device_mutex);
delete img->mem;
}
delete img;
images[type][slot] = NULL;
--tex_num_images[type];
}
}
void ImageManager::device_update(Device *device,
Scene *scene,
Progress& progress)
{
if(!need_update) {
return;
}
TaskPool pool;
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
continue;
if(images[type][slot]->users == 0) {
device_free_image(device, (ImageDataType)type, slot);
}
else if(images[type][slot]->need_load) {
if(!osl_texture_system || images[type][slot]->builtin_data)
pool.push(function_bind(&ImageManager::device_load_image,
this,
device,
scene,
(ImageDataType)type,
slot,
&progress));
}
}
}
pool.wait_work();
need_update = false;
}
void ImageManager::device_update_slot(Device *device,
Scene *scene,
int flat_slot,
Progress *progress)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *image = images[type][slot];
assert(image != NULL);
if(image->users == 0) {
device_free_image(device, type, slot);
}
else if(image->need_load) {
if(!osl_texture_system || image->builtin_data)
device_load_image(device,
scene,
type,
slot,
progress);
}
}
void ImageManager::device_free_builtin(Device *device)
{
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && images[type][slot]->builtin_data)
device_free_image(device, (ImageDataType)type, slot);
}
}
}
void ImageManager::device_free(Device *device)
{
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
device_free_image(device, (ImageDataType)type, slot);
}
images[type].clear();
}
}
CCL_NAMESPACE_END