forked from bartvdbraak/blender
afb75ad2af
Also refactor SVM BSDF code, preparing it to be shared with OSL.
200 lines
6.7 KiB
C
200 lines
6.7 KiB
C
/*
|
|
* Adapted from Open Shading Language with this license:
|
|
*
|
|
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
|
|
* All Rights Reserved.
|
|
*
|
|
* Modifications Copyright 2011, Blender Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Sony Pictures Imageworks nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __BSDF_WESTIN_H__
|
|
#define __BSDF_WESTIN_H__
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* WESTIN BACKSCATTER */
|
|
|
|
__device void bsdf_westin_backscatter_setup(ShaderData *sd, ShaderClosure *sc, float roughness)
|
|
{
|
|
roughness = clamp(roughness, 1e-5f, 1.0f);
|
|
float m_invroughness = 1.0f/roughness;
|
|
|
|
sc->type = CLOSURE_BSDF_WESTIN_BACKSCATTER_ID;
|
|
sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
|
|
sc->data0 = m_invroughness;
|
|
}
|
|
|
|
__device void bsdf_westin_backscatter_blur(ShaderClosure *sc, float roughness)
|
|
{
|
|
float m_invroughness = sc->data0;
|
|
m_invroughness = min(1.0f/roughness, m_invroughness);
|
|
sc->data0 = m_invroughness;
|
|
}
|
|
|
|
__device float3 bsdf_westin_backscatter_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
float m_invroughness = sc->data0;
|
|
float3 N = sc->N;
|
|
|
|
// pdf is implicitly 0 (no indirect sampling)
|
|
float cosNO = dot(N, I);
|
|
float cosNI = dot(N, omega_in);
|
|
if(cosNO > 0 && cosNI > 0) {
|
|
float cosine = dot(I, omega_in);
|
|
*pdf = cosine > 0 ? (m_invroughness + 1) * powf(cosine, m_invroughness) : 0;
|
|
*pdf *= 0.5f * M_1_PI_F;
|
|
return make_float3 (*pdf, *pdf, *pdf);
|
|
}
|
|
return make_float3 (0, 0, 0);
|
|
}
|
|
|
|
__device float3 bsdf_westin_backscatter_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
__device float bsdf_westin_backscatter_albedo(const ShaderClosure *sc, const float3 I)
|
|
{
|
|
return 1.0f;
|
|
}
|
|
|
|
__device int bsdf_westin_backscatter_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
|
|
{
|
|
float m_invroughness = sc->data0;
|
|
float3 N = sc->N;
|
|
|
|
float cosNO = dot(N, I);
|
|
if(cosNO > 0) {
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
*domega_in_dx = dIdx;
|
|
*domega_in_dy = dIdy;
|
|
#endif
|
|
float3 T, B;
|
|
make_orthonormals (I, &T, &B);
|
|
float phi = 2 * M_PI_F * randu;
|
|
float cosTheta = powf(randv, 1 / (m_invroughness + 1));
|
|
float sinTheta2 = 1 - cosTheta * cosTheta;
|
|
float sinTheta = sinTheta2 > 0 ? sqrtf(sinTheta2) : 0;
|
|
*omega_in = (cosf(phi) * sinTheta) * T +
|
|
(sinf(phi) * sinTheta) * B +
|
|
(cosTheta) * I;
|
|
if(dot(Ng, *omega_in) > 0)
|
|
{
|
|
// common terms for pdf and eval
|
|
float cosNI = dot(N, *omega_in);
|
|
// make sure the direction we chose is still in the right hemisphere
|
|
if(cosNI > 0)
|
|
{
|
|
*pdf = 0.5f * M_1_PI_F * powf(cosTheta, m_invroughness);
|
|
*pdf = (m_invroughness + 1) * (*pdf);
|
|
*eval = make_float3(*pdf, *pdf, *pdf);
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
// Since there is some blur to this reflection, make the
|
|
// derivatives a bit bigger. In theory this varies with the
|
|
// exponent but the exact relationship is complex and
|
|
// requires more ops than are practical.
|
|
*domega_in_dx *= 10.0f;
|
|
*domega_in_dy *= 10.0f;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
return LABEL_REFLECT|LABEL_GLOSSY;
|
|
}
|
|
|
|
/* WESTIN SHEEN */
|
|
|
|
__device void bsdf_westin_sheen_setup(ShaderData *sd, ShaderClosure *sc, float edginess)
|
|
{
|
|
sc->type = CLOSURE_BSDF_WESTIN_SHEEN_ID;
|
|
sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
|
|
sc->data0 = edginess;
|
|
}
|
|
|
|
__device void bsdf_westin_sheen_blur(ShaderClosure *sc, float roughness)
|
|
{
|
|
}
|
|
|
|
__device float3 bsdf_westin_sheen_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
float m_edginess = sc->data0;
|
|
float3 N = sc->N;
|
|
|
|
// pdf is implicitly 0 (no indirect sampling)
|
|
float cosNO = dot(N, I);
|
|
float cosNI = dot(N, omega_in);
|
|
if(cosNO > 0 && cosNI > 0) {
|
|
float sinNO2 = 1 - cosNO * cosNO;
|
|
*pdf = cosNI * M_1_PI_F;
|
|
float westin = sinNO2 > 0 ? powf(sinNO2, 0.5f * m_edginess) * (*pdf) : 0;
|
|
return make_float3 (westin, westin, westin);
|
|
}
|
|
return make_float3 (0, 0, 0);
|
|
}
|
|
|
|
__device float3 bsdf_westin_sheen_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
__device float bsdf_westin_sheen_albedo(const ShaderClosure *sc, const float3 I)
|
|
{
|
|
return 1.0f;
|
|
}
|
|
|
|
__device int bsdf_westin_sheen_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
|
|
{
|
|
float m_edginess = sc->data0;
|
|
float3 N = sc->N;
|
|
|
|
// we are viewing the surface from the right side - send a ray out with cosine
|
|
// distribution over the hemisphere
|
|
sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
|
|
if(dot(Ng, *omega_in) > 0) {
|
|
// TODO: account for sheen when sampling
|
|
float cosNO = dot(N, I);
|
|
float sinNO2 = 1 - cosNO * cosNO;
|
|
float westin = sinNO2 > 0 ? powf(sinNO2, 0.5f * m_edginess) * (*pdf) : 0;
|
|
*eval = make_float3(westin, westin, westin);
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
// TODO: find a better approximation for the diffuse bounce
|
|
*domega_in_dx = (2 * dot(N, dIdx)) * N - dIdx;
|
|
*domega_in_dy = (2 * dot(N, dIdy)) * N - dIdy;
|
|
*domega_in_dx *= 125.0f;
|
|
*domega_in_dy *= 125.0f;
|
|
#endif
|
|
}
|
|
else {
|
|
pdf = 0;
|
|
}
|
|
return LABEL_REFLECT|LABEL_DIFFUSE;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __BSDF_WESTIN_H__ */
|
|
|