blender/intern/cycles/kernel/kernel_camera.h
Mai Lavelle 5bd9b12dc4 Cycles: adaptive subdivision support for panoramic cameras.
Adds the code to get screen size of a point in world space, which is
used for subdividing geometry to the correct level. The approximate
method of treating the point as if it were directly in front of the
camera is used, as panoramic projections can become very distorted
near the edges of an image. This should be fine for most uses.

There is also no support yet for offscreen dicing scale, though
panorama cameras are often used for rendering 360° renders anyway.

Fixes T49254.

Differential Revision: https://developer.blender.org/D2468
2018-01-12 23:57:45 +01:00

482 lines
15 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Perspective Camera */
ccl_device float2 camera_sample_aperture(ccl_constant KernelCamera *cam, float u, float v)
{
float blades = cam->blades;
float2 bokeh;
if(blades == 0.0f) {
/* sample disk */
bokeh = concentric_sample_disk(u, v);
}
else {
/* sample polygon */
float rotation = cam->bladesrotation;
bokeh = regular_polygon_sample(blades, rotation, u, v);
}
/* anamorphic lens bokeh */
bokeh.x *= cam->inv_aperture_ratio;
return bokeh;
}
ccl_device void camera_sample_perspective(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, ccl_addr_space Ray *ray)
{
/* create ray form raster position */
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 raster = make_float3(raster_x, raster_y, 0.0f);
float3 Pcamera = transform_perspective(&rastertocamera, raster);
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_perspective_motion) {
/* TODO(sergey): Currently we interpolate projected coordinate which
* gives nice looking result and which is simple, but is in fact a bit
* different comparing to constructing projective matrix from an
* interpolated field of view.
*/
if(ray->time < 0.5f) {
Transform rastertocamera_pre = kernel_data.cam.perspective_motion.pre;
float3 Pcamera_pre =
transform_perspective(&rastertocamera_pre, raster);
Pcamera = interp(Pcamera_pre, Pcamera, ray->time * 2.0f);
}
else {
Transform rastertocamera_post = kernel_data.cam.perspective_motion.post;
float3 Pcamera_post =
transform_perspective(&rastertocamera_post, raster);
Pcamera = interp(Pcamera, Pcamera_post, (ray->time - 0.5f) * 2.0f);
}
}
#endif
float3 P = make_float3(0.0f, 0.0f, 0.0f);
float3 D = Pcamera;
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float ft = kernel_data.cam.focaldistance/D.z;
float3 Pfocus = D*ft;
/* update ray for effect of lens */
P = make_float3(lensuv.x, lensuv.y, 0.0f);
D = normalize(Pfocus - P);
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion) {
# ifdef __KERNEL_OPENCL__
const MotionTransform tfm = kernel_data.cam.motion;
transform_motion_interpolate(&cameratoworld,
&tfm,
ray->time);
# else
transform_motion_interpolate(&cameratoworld,
&kernel_data.cam.motion,
ray->time);
# endif
}
#endif
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
bool use_stereo = kernel_data.cam.interocular_offset != 0.0f;
if(!use_stereo) {
/* No stereo */
ray->P = P;
ray->D = D;
#ifdef __RAY_DIFFERENTIALS__
float3 Dcenter = transform_direction(&cameratoworld, Pcamera);
ray->dP = differential3_zero();
ray->dD.dx = normalize(Dcenter + float4_to_float3(kernel_data.cam.dx)) - normalize(Dcenter);
ray->dD.dy = normalize(Dcenter + float4_to_float3(kernel_data.cam.dy)) - normalize(Dcenter);
#endif
}
else {
/* Spherical stereo */
spherical_stereo_transform(&kernel_data.cam, &P, &D);
ray->P = P;
ray->D = D;
#ifdef __RAY_DIFFERENTIALS__
/* Ray differentials, computed from scratch using the raster coordinates
* because we don't want to be affected by depth of field. We compute
* ray origin and direction for the center and two neighbouring pixels
* and simply take their differences. */
float3 Pnostereo = transform_point(&cameratoworld, make_float3(0.0f, 0.0f, 0.0f));
float3 Pcenter = Pnostereo;
float3 Dcenter = Pcamera;
Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));
spherical_stereo_transform(&kernel_data.cam, &Pcenter, &Dcenter);
float3 Px = Pnostereo;
float3 Dx = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
Dx = normalize(transform_direction(&cameratoworld, Dx));
spherical_stereo_transform(&kernel_data.cam, &Px, &Dx);
ray->dP.dx = Px - Pcenter;
ray->dD.dx = Dx - Dcenter;
float3 Py = Pnostereo;
float3 Dy = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
Dy = normalize(transform_direction(&cameratoworld, Dy));
spherical_stereo_transform(&kernel_data.cam, &Py, &Dy);
ray->dP.dy = Py - Pcenter;
ray->dD.dy = Dy - Dcenter;
#endif
}
#ifdef __CAMERA_CLIPPING__
/* clipping */
float z_inv = 1.0f / normalize(Pcamera).z;
float nearclip = kernel_data.cam.nearclip * z_inv;
ray->P += nearclip * ray->D;
ray->dP.dx += nearclip * ray->dD.dx;
ray->dP.dy += nearclip * ray->dD.dy;
ray->t = kernel_data.cam.cliplength * z_inv;
#else
ray->t = FLT_MAX;
#endif
}
/* Orthographic Camera */
ccl_device void camera_sample_orthographic(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, ccl_addr_space Ray *ray)
{
/* create ray form raster position */
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
float3 P;
float3 D = make_float3(0.0f, 0.0f, 1.0f);
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float3 Pfocus = D * kernel_data.cam.focaldistance;
/* update ray for effect of lens */
float3 lensuvw = make_float3(lensuv.x, lensuv.y, 0.0f);
P = Pcamera + lensuvw;
D = normalize(Pfocus - lensuvw);
}
else {
P = Pcamera;
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion) {
# ifdef __KERNEL_OPENCL__
const MotionTransform tfm = kernel_data.cam.motion;
transform_motion_interpolate(&cameratoworld,
&tfm,
ray->time);
# else
transform_motion_interpolate(&cameratoworld,
&kernel_data.cam.motion,
ray->time);
# endif
}
#endif
ray->P = transform_point(&cameratoworld, P);
ray->D = normalize(transform_direction(&cameratoworld, D));
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
ray->dP.dx = float4_to_float3(kernel_data.cam.dx);
ray->dP.dy = float4_to_float3(kernel_data.cam.dy);
ray->dD = differential3_zero();
#endif
#ifdef __CAMERA_CLIPPING__
/* clipping */
ray->t = kernel_data.cam.cliplength;
#else
ray->t = FLT_MAX;
#endif
}
/* Panorama Camera */
ccl_device_inline void camera_sample_panorama(ccl_constant KernelCamera *cam,
float raster_x, float raster_y,
float lens_u, float lens_v,
ccl_addr_space Ray *ray)
{
Transform rastertocamera = cam->rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
/* create ray form raster position */
float3 P = make_float3(0.0f, 0.0f, 0.0f);
float3 D = panorama_to_direction(cam, Pcamera.x, Pcamera.y);
/* indicates ray should not receive any light, outside of the lens */
if(is_zero(D)) {
ray->t = 0.0f;
return;
}
/* modify ray for depth of field */
float aperturesize = cam->aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(cam, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float3 Dfocus = normalize(D);
float3 Pfocus = Dfocus * cam->focaldistance;
/* calculate orthonormal coordinates perpendicular to Dfocus */
float3 U, V;
U = normalize(make_float3(1.0f, 0.0f, 0.0f) - Dfocus.x * Dfocus);
V = normalize(cross(Dfocus, U));
/* update ray for effect of lens */
P = U * lensuv.x + V * lensuv.y;
D = normalize(Pfocus - P);
}
/* transform ray from camera to world */
Transform cameratoworld = cam->cameratoworld;
#ifdef __CAMERA_MOTION__
if(cam->have_motion) {
# ifdef __KERNEL_OPENCL__
const MotionTransform tfm = cam->motion;
transform_motion_interpolate(&cameratoworld,
&tfm,
ray->time);
# else
transform_motion_interpolate(&cameratoworld,
&cam->motion,
ray->time);
# endif
}
#endif
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
/* Stereo transform */
bool use_stereo = cam->interocular_offset != 0.0f;
if(use_stereo) {
spherical_stereo_transform(cam, &P, &D);
}
ray->P = P;
ray->D = D;
#ifdef __RAY_DIFFERENTIALS__
/* Ray differentials, computed from scratch using the raster coordinates
* because we don't want to be affected by depth of field. We compute
* ray origin and direction for the center and two neighbouring pixels
* and simply take their differences. */
float3 Pcenter = Pcamera;
float3 Dcenter = panorama_to_direction(cam, Pcenter.x, Pcenter.y);
Pcenter = transform_point(&cameratoworld, Pcenter);
Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));
if(use_stereo) {
spherical_stereo_transform(cam, &Pcenter, &Dcenter);
}
float3 Px = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
float3 Dx = panorama_to_direction(cam, Px.x, Px.y);
Px = transform_point(&cameratoworld, Px);
Dx = normalize(transform_direction(&cameratoworld, Dx));
if(use_stereo) {
spherical_stereo_transform(cam, &Px, &Dx);
}
ray->dP.dx = Px - Pcenter;
ray->dD.dx = Dx - Dcenter;
float3 Py = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
float3 Dy = panorama_to_direction(cam, Py.x, Py.y);
Py = transform_point(&cameratoworld, Py);
Dy = normalize(transform_direction(&cameratoworld, Dy));
if(use_stereo) {
spherical_stereo_transform(cam, &Py, &Dy);
}
ray->dP.dy = Py - Pcenter;
ray->dD.dy = Dy - Dcenter;
#endif
#ifdef __CAMERA_CLIPPING__
/* clipping */
float nearclip = cam->nearclip;
ray->P += nearclip * ray->D;
ray->dP.dx += nearclip * ray->dD.dx;
ray->dP.dy += nearclip * ray->dD.dy;
ray->t = cam->cliplength;
#else
ray->t = FLT_MAX;
#endif
}
/* Common */
ccl_device_inline void camera_sample(KernelGlobals *kg,
int x, int y,
float filter_u, float filter_v,
float lens_u, float lens_v,
float time,
ccl_addr_space Ray *ray)
{
/* pixel filter */
int filter_table_offset = kernel_data.film.filter_table_offset;
float raster_x = x + lookup_table_read(kg, filter_u, filter_table_offset, FILTER_TABLE_SIZE);
float raster_y = y + lookup_table_read(kg, filter_v, filter_table_offset, FILTER_TABLE_SIZE);
#ifdef __CAMERA_MOTION__
/* motion blur */
if(kernel_data.cam.shuttertime == -1.0f) {
ray->time = 0.5f;
}
else {
/* TODO(sergey): Such lookup is unneeded when there's rolling shutter
* effect in use but rolling shutter duration is set to 0.0.
*/
const int shutter_table_offset = kernel_data.cam.shutter_table_offset;
ray->time = lookup_table_read(kg, time, shutter_table_offset, SHUTTER_TABLE_SIZE);
/* TODO(sergey): Currently single rolling shutter effect type only
* where scanlines are acquired from top to bottom and whole scanline
* is acquired at once (no delay in acquisition happens between pixels
* of single scanline).
*
* Might want to support more models in the future.
*/
if(kernel_data.cam.rolling_shutter_type) {
/* Time corresponding to a fully rolling shutter only effect:
* top of the frame is time 0.0, bottom of the frame is time 1.0.
*/
const float time = 1.0f - (float)y / kernel_data.cam.height;
const float duration = kernel_data.cam.rolling_shutter_duration;
if(duration != 0.0f) {
/* This isn't fully physical correct, but lets us to have simple
* controls in the interface. The idea here is basically sort of
* linear interpolation between how much rolling shutter effect
* exist on the frame and how much of it is a motion blur effect.
*/
ray->time = (ray->time - 0.5f) * duration;
ray->time += (time - 0.5f) * (1.0f - duration) + 0.5f;
}
else {
ray->time = time;
}
}
}
#endif
/* sample */
if(kernel_data.cam.type == CAMERA_PERSPECTIVE)
camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
else if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
camera_sample_orthographic(kg, raster_x, raster_y, lens_u, lens_v, ray);
else
camera_sample_panorama(&kernel_data.cam, raster_x, raster_y, lens_u, lens_v, ray);
}
/* Utilities */
ccl_device_inline float3 camera_position(KernelGlobals *kg)
{
Transform cameratoworld = kernel_data.cam.cameratoworld;
return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
}
ccl_device_inline float camera_distance(KernelGlobals *kg, float3 P)
{
Transform cameratoworld = kernel_data.cam.cameratoworld;
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
return fabsf(dot((P - camP), camD));
}
else
return len(P - camP);
}
ccl_device_inline float3 camera_direction_from_point(KernelGlobals *kg, float3 P)
{
Transform cameratoworld = kernel_data.cam.cameratoworld;
if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
return -camD;
}
else {
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
return normalize(camP - P);
}
}
ccl_device_inline float3 camera_world_to_ndc(KernelGlobals *kg, ShaderData *sd, float3 P)
{
if(kernel_data.cam.type != CAMERA_PANORAMA) {
/* perspective / ortho */
if(sd->object == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
P += camera_position(kg);
Transform tfm = kernel_data.cam.worldtondc;
return transform_perspective(&tfm, P);
}
else {
/* panorama */
Transform tfm = kernel_data.cam.worldtocamera;
if(sd->object != OBJECT_NONE)
P = normalize(transform_point(&tfm, P));
else
P = normalize(transform_direction(&tfm, P));
float2 uv = direction_to_panorama(&kernel_data.cam, P);
return make_float3(uv.x, uv.y, 0.0f);
}
}
CCL_NAMESPACE_END