forked from bartvdbraak/blender
9119b6e8a5
'Bullet/CollisionShapes/ConvexTriangleCallback.cpp', 'Bullet/CollisionShapes/EmptyShape.cpp', 'Bullet/CollisionShapes/OptimizedBvh.cpp', 'Bullet/CollisionShapes/TriangleCallback.cpp', 'Bullet/CollisionShapes/TriangleIndexVertexArray.cpp', 'Bullet/NarrowPhaseCollision/ManifoldContactAddResult.cpp'. Sorry, no armatures fix yet.
130 lines
4.2 KiB
C++
130 lines
4.2 KiB
C++
/*
|
|
* Copyright (c) 2005 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies.
|
|
* Erwin Coumans makes no representations about the suitability
|
|
* of this software for any purpose.
|
|
* It is provided "as is" without express or implied warranty.
|
|
*/
|
|
#ifndef JACOBIAN_ENTRY_H
|
|
#define JACOBIAN_ENTRY_H
|
|
|
|
#include "SimdVector3.h"
|
|
#include "Dynamics/RigidBody.h"
|
|
|
|
|
|
//notes:
|
|
// Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
|
|
// which makes the JacobianEntry memory layout 16 bytes
|
|
// if you only are interested in angular part, just feed massInvA and massInvB zero
|
|
|
|
/// Jacobian entry is an abstraction that allows to describe constraints
|
|
/// it can be used in combination with a constraint solver
|
|
/// Can be used to relate the effect of an impulse to the constraint error
|
|
class JacobianEntry
|
|
{
|
|
public:
|
|
JacobianEntry() {};
|
|
//constraint between two different rigidbodies
|
|
JacobianEntry(
|
|
const SimdMatrix3x3& world2A,
|
|
const SimdMatrix3x3& world2B,
|
|
const SimdVector3& rel_pos1,const SimdVector3& rel_pos2,
|
|
const SimdVector3& jointAxis,
|
|
const SimdVector3& inertiaInvA,
|
|
const SimdScalar massInvA,
|
|
const SimdVector3& inertiaInvB,
|
|
const SimdScalar massInvB)
|
|
:m_jointAxis(jointAxis)
|
|
{
|
|
m_aJ = world2A*(rel_pos1.cross(m_jointAxis));
|
|
m_bJ = world2B*(rel_pos2.cross(m_jointAxis));
|
|
m_0MinvJt = inertiaInvA * m_aJ;
|
|
m_1MinvJt = inertiaInvB * m_bJ;
|
|
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
|
|
}
|
|
|
|
//angular constraint between two different rigidbodies
|
|
JacobianEntry(const SimdVector3& jointAxis,
|
|
const SimdMatrix3x3& world2A,
|
|
const SimdMatrix3x3& world2B,
|
|
const SimdVector3& inertiaInvA,
|
|
const SimdVector3& inertiaInvB)
|
|
:m_jointAxis(m_jointAxis)
|
|
{
|
|
m_aJ= world2A*m_jointAxis;
|
|
m_bJ = world2B*-m_jointAxis;
|
|
m_0MinvJt = inertiaInvA * m_aJ;
|
|
m_1MinvJt = inertiaInvB * m_bJ;
|
|
m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
|
|
}
|
|
|
|
//constraint on one rigidbody
|
|
JacobianEntry(
|
|
const SimdMatrix3x3& world2A,
|
|
const SimdVector3& rel_pos1,const SimdVector3& rel_pos2,
|
|
const SimdVector3& jointAxis,
|
|
const SimdVector3& inertiaInvA,
|
|
const SimdScalar massInvA)
|
|
:m_jointAxis(jointAxis)
|
|
{
|
|
m_aJ= world2A*(rel_pos1.cross(m_jointAxis));
|
|
m_bJ = world2A*(rel_pos2.cross(m_jointAxis));
|
|
m_0MinvJt = inertiaInvA * m_aJ;
|
|
m_1MinvJt = SimdVector3(0.f,0.f,0.f);
|
|
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
|
|
}
|
|
|
|
SimdScalar getDiagonal() const { return m_Adiag; }
|
|
|
|
// for two constraints on the same rigidbody (for example vehicle friction)
|
|
SimdScalar getNonDiagonal(const JacobianEntry& jacB, const SimdScalar massInvA) const
|
|
{
|
|
const JacobianEntry& jacA = *this;
|
|
SimdScalar lin = massInvA * jacA.m_jointAxis.dot(jacB.m_jointAxis);
|
|
SimdScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
|
|
return lin + ang;
|
|
}
|
|
|
|
|
|
|
|
// for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
|
|
SimdScalar getNonDiagonal(const JacobianEntry& jacB,const SimdScalar massInvA,const SimdScalar massInvB) const
|
|
{
|
|
const JacobianEntry& jacA = *this;
|
|
SimdVector3 lin = jacA.m_jointAxis* jacB.m_jointAxis;
|
|
SimdVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
|
|
SimdVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
|
|
SimdVector3 lin0 = massInvA * lin ;
|
|
SimdVector3 lin1 = massInvB * lin;
|
|
SimdVector3 sum = ang0+ang1+lin0+lin1;
|
|
return sum[0]+sum[1]+sum[2];
|
|
}
|
|
|
|
SimdScalar getRelativeVelocity(const SimdVector3& linvelA,const SimdVector3& angvelA,const SimdVector3& linvelB,const SimdVector3& angvelB)
|
|
{
|
|
SimdVector3 linrel = linvelA - linvelB;
|
|
SimdVector3 angvela = angvelA * m_aJ;
|
|
SimdVector3 angvelb = angvelB * m_bJ;
|
|
linrel *= m_jointAxis;
|
|
angvela += angvelb;
|
|
angvela += linrel;
|
|
SimdScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
|
|
return rel_vel2 + SIMD_EPSILON;
|
|
}
|
|
//private:
|
|
|
|
SimdVector3 m_jointAxis;
|
|
SimdVector3 m_aJ;
|
|
SimdVector3 m_bJ;
|
|
SimdVector3 m_0MinvJt;
|
|
SimdVector3 m_1MinvJt;
|
|
//Optimization: can be stored in the w/last component of one of the vectors
|
|
SimdScalar m_Adiag;
|
|
|
|
};
|
|
|
|
#endif //JACOBIAN_ENTRY_H
|