blender/source/gameengine/Converter/BL_BlenderDataConversion.cpp
2012-09-16 00:22:55 +00:00

2968 lines
92 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Convert blender data to ketsji
*/
/** \file gameengine/Converter/BL_BlenderDataConversion.cpp
* \ingroup bgeconv
*/
#if defined(WIN32) && !defined(FREE_WINDOWS)
#pragma warning (disable : 4786)
#endif
#include <math.h>
#include "BL_BlenderDataConversion.h"
#include "KX_BlenderGL.h"
#include "KX_BlenderScalarInterpolator.h"
#include "RAS_IPolygonMaterial.h"
#include "KX_PolygonMaterial.h"
// Expressions
#include "ListValue.h"
#include "IntValue.h"
// Collision & Fuzzics LTD
#include "PHY_Pro.h"
#include "KX_Scene.h"
#include "KX_GameObject.h"
#include "RAS_FramingManager.h"
#include "RAS_MeshObject.h"
#include "KX_ConvertActuators.h"
#include "KX_ConvertControllers.h"
#include "KX_ConvertSensors.h"
#include "SCA_LogicManager.h"
#include "SCA_EventManager.h"
#include "SCA_TimeEventManager.h"
#include "KX_Light.h"
#include "KX_Camera.h"
#include "KX_EmptyObject.h"
#include "KX_FontObject.h"
#include "MT_Point3.h"
#include "MT_Transform.h"
#include "MT_MinMax.h"
#include "SCA_IInputDevice.h"
#include "RAS_TexMatrix.h"
#include "RAS_ICanvas.h"
#include "RAS_MaterialBucket.h"
//#include "KX_BlenderPolyMaterial.h"
#include "RAS_Polygon.h"
#include "RAS_TexVert.h"
#include "RAS_BucketManager.h"
#include "RAS_IRenderTools.h"
#include "BL_Material.h"
#include "KX_BlenderMaterial.h"
#include "BL_Texture.h"
#include "DNA_action_types.h"
#include "BKE_main.h"
#include "BKE_global.h"
#include "BKE_object.h"
#include "BL_ModifierDeformer.h"
#include "BL_ShapeDeformer.h"
#include "BL_SkinDeformer.h"
#include "BL_MeshDeformer.h"
#include "KX_SoftBodyDeformer.h"
//#include "BL_ArmatureController.h"
#include "BLI_utildefines.h"
#include "BlenderWorldInfo.h"
#include "KX_KetsjiEngine.h"
#include "KX_BlenderSceneConverter.h"
/* This little block needed for linking to Blender... */
#ifdef WIN32
#include "BLI_winstuff.h"
#endif
/* This list includes only data type definitions */
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_texture_types.h"
#include "DNA_image_types.h"
#include "DNA_lamp_types.h"
#include "DNA_group_types.h"
#include "DNA_scene_types.h"
#include "DNA_camera_types.h"
#include "DNA_property_types.h"
#include "DNA_text_types.h"
#include "DNA_sensor_types.h"
#include "DNA_controller_types.h"
#include "DNA_actuator_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_view3d_types.h"
#include "DNA_world_types.h"
#include "DNA_sound_types.h"
#include "DNA_key_types.h"
#include "DNA_armature_types.h"
#include "DNA_object_force.h"
#include "MEM_guardedalloc.h"
#include "BKE_key.h"
#include "BKE_mesh.h"
#include "MT_Point3.h"
#include "BLI_math.h"
extern "C" {
#include "BKE_scene.h"
#include "BKE_customdata.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_DerivedMesh.h"
#include "BKE_material.h" /* give_current_material */
#include "BKE_image.h"
#include "IMB_imbuf_types.h"
extern Material defmaterial; /* material.c */
}
/* end of blender include block */
#include "KX_BlenderInputDevice.h"
#include "KX_ConvertProperties.h"
#include "KX_HashedPtr.h"
#include "KX_ScalarInterpolator.h"
#include "KX_IpoConvert.h"
#include "BL_System.h"
#include "SG_Node.h"
#include "SG_BBox.h"
#include "SG_Tree.h"
#include "KX_ConvertPhysicsObject.h"
#ifdef USE_BULLET
#include "CcdPhysicsEnvironment.h"
#include "CcdGraphicController.h"
#endif
#include "KX_MotionState.h"
// This file defines relationships between parents and children
// in the game engine.
#include "KX_SG_NodeRelationships.h"
#include "KX_SG_BoneParentNodeRelationship.h"
#include "BL_ArmatureObject.h"
#include "BL_DeformableGameObject.h"
#include "KX_NavMeshObject.h"
#include "KX_ObstacleSimulation.h"
#ifdef __cplusplus
extern "C" {
#endif
//XXX void update_for_newframe();
//void BKE_scene_update_for_newframe(struct Scene *sce, unsigned int lay);
//void do_all_data_ipos(void);
#ifdef __cplusplus
}
#endif
static bool default_light_mode = 0;
static std::map<int, SCA_IInputDevice::KX_EnumInputs> create_translate_table()
{
std::map<int, SCA_IInputDevice::KX_EnumInputs> m;
/* The reverse table. In order to not confuse ourselves, we */
/* immediately convert all events that come in to KX codes. */
m[LEFTMOUSE ] = SCA_IInputDevice::KX_LEFTMOUSE;
m[MIDDLEMOUSE ] = SCA_IInputDevice::KX_MIDDLEMOUSE;
m[RIGHTMOUSE ] = SCA_IInputDevice::KX_RIGHTMOUSE;
m[WHEELUPMOUSE ] = SCA_IInputDevice::KX_WHEELUPMOUSE;
m[WHEELDOWNMOUSE ] = SCA_IInputDevice::KX_WHEELDOWNMOUSE;
m[MOUSEX ] = SCA_IInputDevice::KX_MOUSEX;
m[MOUSEY ] = SCA_IInputDevice::KX_MOUSEY;
// TIMERS
m[TIMER0 ] = SCA_IInputDevice::KX_TIMER0;
m[TIMER1 ] = SCA_IInputDevice::KX_TIMER1;
m[TIMER2 ] = SCA_IInputDevice::KX_TIMER2;
// SYSTEM
#if 0
/* **** XXX **** */
m[KEYBD ] = SCA_IInputDevice::KX_KEYBD;
m[RAWKEYBD ] = SCA_IInputDevice::KX_RAWKEYBD;
m[REDRAW ] = SCA_IInputDevice::KX_REDRAW;
m[INPUTCHANGE ] = SCA_IInputDevice::KX_INPUTCHANGE;
m[QFULL ] = SCA_IInputDevice::KX_QFULL;
m[WINFREEZE ] = SCA_IInputDevice::KX_WINFREEZE;
m[WINTHAW ] = SCA_IInputDevice::KX_WINTHAW;
m[WINCLOSE ] = SCA_IInputDevice::KX_WINCLOSE;
m[WINQUIT ] = SCA_IInputDevice::KX_WINQUIT;
m[Q_FIRSTTIME ] = SCA_IInputDevice::KX_Q_FIRSTTIME;
/* **** XXX **** */
#endif
// standard keyboard
m[AKEY ] = SCA_IInputDevice::KX_AKEY;
m[BKEY ] = SCA_IInputDevice::KX_BKEY;
m[CKEY ] = SCA_IInputDevice::KX_CKEY;
m[DKEY ] = SCA_IInputDevice::KX_DKEY;
m[EKEY ] = SCA_IInputDevice::KX_EKEY;
m[FKEY ] = SCA_IInputDevice::KX_FKEY;
m[GKEY ] = SCA_IInputDevice::KX_GKEY;
//XXX clean up
#ifdef WIN32
#define HKEY 'h'
#endif
m[HKEY ] = SCA_IInputDevice::KX_HKEY;
//XXX clean up
#ifdef WIN32
#undef HKEY
#endif
m[IKEY ] = SCA_IInputDevice::KX_IKEY;
m[JKEY ] = SCA_IInputDevice::KX_JKEY;
m[KKEY ] = SCA_IInputDevice::KX_KKEY;
m[LKEY ] = SCA_IInputDevice::KX_LKEY;
m[MKEY ] = SCA_IInputDevice::KX_MKEY;
m[NKEY ] = SCA_IInputDevice::KX_NKEY;
m[OKEY ] = SCA_IInputDevice::KX_OKEY;
m[PKEY ] = SCA_IInputDevice::KX_PKEY;
m[QKEY ] = SCA_IInputDevice::KX_QKEY;
m[RKEY ] = SCA_IInputDevice::KX_RKEY;
m[SKEY ] = SCA_IInputDevice::KX_SKEY;
m[TKEY ] = SCA_IInputDevice::KX_TKEY;
m[UKEY ] = SCA_IInputDevice::KX_UKEY;
m[VKEY ] = SCA_IInputDevice::KX_VKEY;
m[WKEY ] = SCA_IInputDevice::KX_WKEY;
m[XKEY ] = SCA_IInputDevice::KX_XKEY;
m[YKEY ] = SCA_IInputDevice::KX_YKEY;
m[ZKEY ] = SCA_IInputDevice::KX_ZKEY;
m[ZEROKEY ] = SCA_IInputDevice::KX_ZEROKEY;
m[ONEKEY ] = SCA_IInputDevice::KX_ONEKEY;
m[TWOKEY ] = SCA_IInputDevice::KX_TWOKEY;
m[THREEKEY ] = SCA_IInputDevice::KX_THREEKEY;
m[FOURKEY ] = SCA_IInputDevice::KX_FOURKEY;
m[FIVEKEY ] = SCA_IInputDevice::KX_FIVEKEY;
m[SIXKEY ] = SCA_IInputDevice::KX_SIXKEY;
m[SEVENKEY ] = SCA_IInputDevice::KX_SEVENKEY;
m[EIGHTKEY ] = SCA_IInputDevice::KX_EIGHTKEY;
m[NINEKEY ] = SCA_IInputDevice::KX_NINEKEY;
m[CAPSLOCKKEY ] = SCA_IInputDevice::KX_CAPSLOCKKEY;
m[LEFTCTRLKEY ] = SCA_IInputDevice::KX_LEFTCTRLKEY;
m[LEFTALTKEY ] = SCA_IInputDevice::KX_LEFTALTKEY;
m[RIGHTALTKEY ] = SCA_IInputDevice::KX_RIGHTALTKEY;
m[RIGHTCTRLKEY ] = SCA_IInputDevice::KX_RIGHTCTRLKEY;
m[RIGHTSHIFTKEY ] = SCA_IInputDevice::KX_RIGHTSHIFTKEY;
m[LEFTSHIFTKEY ] = SCA_IInputDevice::KX_LEFTSHIFTKEY;
m[ESCKEY ] = SCA_IInputDevice::KX_ESCKEY;
m[TABKEY ] = SCA_IInputDevice::KX_TABKEY;
m[RETKEY ] = SCA_IInputDevice::KX_RETKEY;
m[SPACEKEY ] = SCA_IInputDevice::KX_SPACEKEY;
m[LINEFEEDKEY ] = SCA_IInputDevice::KX_LINEFEEDKEY;
m[BACKSPACEKEY ] = SCA_IInputDevice::KX_BACKSPACEKEY;
m[DELKEY ] = SCA_IInputDevice::KX_DELKEY;
m[SEMICOLONKEY ] = SCA_IInputDevice::KX_SEMICOLONKEY;
m[PERIODKEY ] = SCA_IInputDevice::KX_PERIODKEY;
m[COMMAKEY ] = SCA_IInputDevice::KX_COMMAKEY;
m[QUOTEKEY ] = SCA_IInputDevice::KX_QUOTEKEY;
m[ACCENTGRAVEKEY ] = SCA_IInputDevice::KX_ACCENTGRAVEKEY;
m[MINUSKEY ] = SCA_IInputDevice::KX_MINUSKEY;
m[SLASHKEY ] = SCA_IInputDevice::KX_SLASHKEY;
m[BACKSLASHKEY ] = SCA_IInputDevice::KX_BACKSLASHKEY;
m[EQUALKEY ] = SCA_IInputDevice::KX_EQUALKEY;
m[LEFTBRACKETKEY ] = SCA_IInputDevice::KX_LEFTBRACKETKEY;
m[RIGHTBRACKETKEY ] = SCA_IInputDevice::KX_RIGHTBRACKETKEY;
m[LEFTARROWKEY ] = SCA_IInputDevice::KX_LEFTARROWKEY;
m[DOWNARROWKEY ] = SCA_IInputDevice::KX_DOWNARROWKEY;
m[RIGHTARROWKEY ] = SCA_IInputDevice::KX_RIGHTARROWKEY;
m[UPARROWKEY ] = SCA_IInputDevice::KX_UPARROWKEY;
m[PAD2 ] = SCA_IInputDevice::KX_PAD2;
m[PAD4 ] = SCA_IInputDevice::KX_PAD4;
m[PAD6 ] = SCA_IInputDevice::KX_PAD6;
m[PAD8 ] = SCA_IInputDevice::KX_PAD8;
m[PAD1 ] = SCA_IInputDevice::KX_PAD1;
m[PAD3 ] = SCA_IInputDevice::KX_PAD3;
m[PAD5 ] = SCA_IInputDevice::KX_PAD5;
m[PAD7 ] = SCA_IInputDevice::KX_PAD7;
m[PAD9 ] = SCA_IInputDevice::KX_PAD9;
m[PADPERIOD ] = SCA_IInputDevice::KX_PADPERIOD;
m[PADSLASHKEY ] = SCA_IInputDevice::KX_PADSLASHKEY;
m[PADASTERKEY ] = SCA_IInputDevice::KX_PADASTERKEY;
m[PAD0 ] = SCA_IInputDevice::KX_PAD0;
m[PADMINUS ] = SCA_IInputDevice::KX_PADMINUS;
m[PADENTER ] = SCA_IInputDevice::KX_PADENTER;
m[PADPLUSKEY ] = SCA_IInputDevice::KX_PADPLUSKEY;
m[F1KEY ] = SCA_IInputDevice::KX_F1KEY;
m[F2KEY ] = SCA_IInputDevice::KX_F2KEY;
m[F3KEY ] = SCA_IInputDevice::KX_F3KEY;
m[F4KEY ] = SCA_IInputDevice::KX_F4KEY;
m[F5KEY ] = SCA_IInputDevice::KX_F5KEY;
m[F6KEY ] = SCA_IInputDevice::KX_F6KEY;
m[F7KEY ] = SCA_IInputDevice::KX_F7KEY;
m[F8KEY ] = SCA_IInputDevice::KX_F8KEY;
m[F9KEY ] = SCA_IInputDevice::KX_F9KEY;
m[F10KEY ] = SCA_IInputDevice::KX_F10KEY;
m[F11KEY ] = SCA_IInputDevice::KX_F11KEY;
m[F12KEY ] = SCA_IInputDevice::KX_F12KEY;
m[F13KEY ] = SCA_IInputDevice::KX_F13KEY;
m[F14KEY ] = SCA_IInputDevice::KX_F14KEY;
m[F15KEY ] = SCA_IInputDevice::KX_F15KEY;
m[F16KEY ] = SCA_IInputDevice::KX_F16KEY;
m[F17KEY ] = SCA_IInputDevice::KX_F17KEY;
m[F18KEY ] = SCA_IInputDevice::KX_F18KEY;
m[F19KEY ] = SCA_IInputDevice::KX_F19KEY;
m[PAUSEKEY ] = SCA_IInputDevice::KX_PAUSEKEY;
m[INSERTKEY ] = SCA_IInputDevice::KX_INSERTKEY;
m[HOMEKEY ] = SCA_IInputDevice::KX_HOMEKEY;
m[PAGEUPKEY ] = SCA_IInputDevice::KX_PAGEUPKEY;
m[PAGEDOWNKEY ] = SCA_IInputDevice::KX_PAGEDOWNKEY;
m[ENDKEY ] = SCA_IInputDevice::KX_ENDKEY;
return m;
}
static std::map<int, SCA_IInputDevice::KX_EnumInputs> gReverseKeyTranslateTable = create_translate_table();
static unsigned int KX_rgbaint2uint_new(unsigned int icol)
{
union
{
unsigned int integer;
unsigned char cp[4];
} out_color, in_color;
in_color.integer = icol;
out_color.cp[0] = in_color.cp[3]; // red
out_color.cp[1] = in_color.cp[2]; // green
out_color.cp[2] = in_color.cp[1]; // blue
out_color.cp[3] = in_color.cp[0]; // alpha
return out_color.integer;
}
/* Now the real converting starts... */
static unsigned int KX_Mcol2uint_new(MCol col)
{
/* color has to be converted without endian sensitivity. So no shifting! */
union
{
MCol col;
unsigned int integer;
unsigned char cp[4];
} out_color, in_color;
in_color.col = col;
out_color.cp[0] = in_color.cp[3]; // red
out_color.cp[1] = in_color.cp[2]; // green
out_color.cp[2] = in_color.cp[1]; // blue
out_color.cp[3] = in_color.cp[0]; // alpha
return out_color.integer;
}
static void SetDefaultLightMode(Scene* scene)
{
default_light_mode = false;
Scene *sce_iter;
Base *base;
for (SETLOOPER(scene, sce_iter, base))
{
if (base->object->type == OB_LAMP)
{
default_light_mode = true;
return;
}
}
}
// --
static void GetRGB(short type,
MFace* mface,
MCol* mmcol,
Material *mat,
unsigned int &c0,
unsigned int &c1,
unsigned int &c2,
unsigned int &c3)
{
unsigned int color = 0xFFFFFFFFL;
switch(type)
{
case 0: // vertex colors
{
if (mmcol) {
c0 = KX_Mcol2uint_new(mmcol[0]);
c1 = KX_Mcol2uint_new(mmcol[1]);
c2 = KX_Mcol2uint_new(mmcol[2]);
if (mface->v4)
c3 = KX_Mcol2uint_new(mmcol[3]);
}
else { // backup white
c0 = KX_rgbaint2uint_new(color);
c1 = KX_rgbaint2uint_new(color);
c2 = KX_rgbaint2uint_new(color);
if (mface->v4)
c3 = KX_rgbaint2uint_new( color );
}
} break;
case 1: // material rgba
{
if (mat) {
union {
unsigned char cp[4];
unsigned int integer;
} col_converter;
col_converter.cp[3] = (unsigned char) (mat->r * 255.0f);
col_converter.cp[2] = (unsigned char) (mat->g * 255.0f);
col_converter.cp[1] = (unsigned char) (mat->b * 255.0f);
col_converter.cp[0] = (unsigned char) (mat->alpha * 255.0f);
color = col_converter.integer;
}
c0 = KX_rgbaint2uint_new(color);
c1 = KX_rgbaint2uint_new(color);
c2 = KX_rgbaint2uint_new(color);
if (mface->v4)
c3 = KX_rgbaint2uint_new(color);
} break;
default: // white
{
c0 = KX_rgbaint2uint_new(color);
c1 = KX_rgbaint2uint_new(color);
c2 = KX_rgbaint2uint_new(color);
if (mface->v4)
c3 = KX_rgbaint2uint_new(color);
} break;
}
}
typedef struct MTF_localLayer {
MTFace *face;
const char *name;
} MTF_localLayer;
// ------------------------------------
static bool ConvertMaterial(
BL_Material *material,
Material *mat,
MTFace* tface,
const char *tfaceName,
MFace* mface,
MCol* mmcol,
MTF_localLayer *layers,
bool glslmat)
{
material->Initialize();
int numchan = -1, texalpha = 0;
bool validmat = (mat!=0);
bool validface = (tface!=0);
short type = 0;
if ( validmat )
type = 1; // material color
material->IdMode = DEFAULT_BLENDER;
material->glslmat = (validmat)? glslmat: false;
material->materialindex = mface->mat_nr;
// --------------------------------
if (validmat) {
// use vertex colors by explicitly setting
if (mat->mode &MA_VERTEXCOLP || glslmat)
type = 0;
// use lighting?
material->ras_mode |= ( mat->mode & MA_SHLESS )?0:USE_LIGHT;
material->ras_mode |= ( mat->game.flag & GEMAT_BACKCULL )?0:TWOSIDED;
// cast shadows?
material->ras_mode |= ( mat->mode & MA_SHADBUF )?CAST_SHADOW:0;
MTex *mttmp = 0;
numchan = getNumTexChannels(mat);
int valid_index = 0;
/* In Multitexture use the face texture if and only if
* it is set in the buttons
* In GLSL is not working yet :/ 3.2011 */
bool facetex = false;
if (validface && mat->mode &MA_FACETEXTURE)
facetex = true;
numchan = numchan>MAXTEX?MAXTEX:numchan;
if (facetex && numchan == 0) numchan = 1;
// foreach MTex
for (int i=0; i<numchan; i++) {
// use face tex
if (i==0 && facetex ) {
facetex = false;
Image*tmp = (Image*)(tface->tpage);
if (tmp) {
material->img[i] = tmp;
material->texname[i] = material->img[i]->id.name;
material->flag[i] |= MIPMAP;
material->flag[i] |= ( mat->game.alpha_blend & GEMAT_ALPHA_SORT )?USEALPHA:0;
material->flag[i] |= ( mat->game.alpha_blend & GEMAT_ALPHA )?USEALPHA:0;
material->flag[i] |= ( mat->game.alpha_blend & GEMAT_ADD )?CALCALPHA:0;
if (material->img[i]->flag & IMA_REFLECT)
material->mapping[i].mapping |= USEREFL;
else
{
mttmp = getImageFromMaterial( mat, i );
if (mttmp && mttmp->texco &TEXCO_UV)
{
STR_String uvName = mttmp->uvname;
if (!uvName.IsEmpty())
material->mapping[i].uvCoName = mttmp->uvname;
else
material->mapping[i].uvCoName = "";
}
material->mapping[i].mapping |= USEUV;
}
valid_index++;
}
else {
material->img[i] = 0;
material->texname[i] = "";
}
continue;
}
mttmp = getImageFromMaterial( mat, i );
if ( mttmp ) {
if ( mttmp->tex ) {
if ( mttmp->tex->type == TEX_IMAGE ) {
material->mtexname[i] = mttmp->tex->id.name;
material->img[i] = mttmp->tex->ima;
if ( material->img[i] ) {
material->texname[i] = material->img[i]->id.name;
material->flag[i] |= ( mttmp->tex->imaflag &TEX_MIPMAP )?MIPMAP:0;
// -----------------------
if ( mttmp->tex->imaflag &TEX_USEALPHA ) {
material->flag[i] |= USEALPHA;
}
// -----------------------
else if ( mttmp->tex->imaflag &TEX_CALCALPHA ) {
material->flag[i] |= CALCALPHA;
}
else if (mttmp->tex->flag &TEX_NEGALPHA) {
material->flag[i] |= USENEGALPHA;
}
material->color_blend[i] = mttmp->colfac;
material->flag[i] |= ( mttmp->mapto & MAP_ALPHA )?TEXALPHA:0;
material->flag[i] |= ( mttmp->texflag& MTEX_NEGATIVE )?TEXNEG:0;
if (!glslmat && (material->flag[i] & TEXALPHA))
texalpha = 1;
}
}
else if (mttmp->tex->type == TEX_ENVMAP) {
if ( mttmp->tex->env->stype == ENV_LOAD ) {
material->mtexname[i] = mttmp->tex->id.name;
EnvMap *env = mttmp->tex->env;
env->ima = mttmp->tex->ima;
material->cubemap[i] = env;
if (material->cubemap[i])
{
if (!material->cubemap[i]->cube[0])
BL_Texture::SplitEnvMap(material->cubemap[i]);
material->texname[i]= material->cubemap[i]->ima->id.name;
material->mapping[i].mapping |= USEENV;
}
}
}
#if 0 /* this flag isn't used anymore */
material->flag[i] |= (BKE_animdata_from_id(mat->id) != NULL) ? HASIPO : 0;
#endif
/// --------------------------------
// mapping methods
material->mapping[i].mapping |= ( mttmp->texco & TEXCO_REFL )?USEREFL:0;
if (mttmp->texco & TEXCO_OBJECT) {
material->mapping[i].mapping |= USEOBJ;
if (mttmp->object)
material->mapping[i].objconame = mttmp->object->id.name;
}
else if (mttmp->texco &TEXCO_REFL)
material->mapping[i].mapping |= USEREFL;
else if (mttmp->texco &(TEXCO_ORCO|TEXCO_GLOB))
material->mapping[i].mapping |= USEORCO;
else if (mttmp->texco &TEXCO_UV)
{
STR_String uvName = mttmp->uvname;
if (!uvName.IsEmpty())
material->mapping[i].uvCoName = mttmp->uvname;
else
material->mapping[i].uvCoName = "";
material->mapping[i].mapping |= USEUV;
}
else if (mttmp->texco &TEXCO_NORM)
material->mapping[i].mapping |= USENORM;
else if (mttmp->texco &TEXCO_TANGENT)
material->mapping[i].mapping |= USETANG;
else
material->mapping[i].mapping |= DISABLE;
material->mapping[i].scale[0] = mttmp->size[0];
material->mapping[i].scale[1] = mttmp->size[1];
material->mapping[i].scale[2] = mttmp->size[2];
material->mapping[i].offsets[0] = mttmp->ofs[0];
material->mapping[i].offsets[1] = mttmp->ofs[1];
material->mapping[i].offsets[2] = mttmp->ofs[2];
material->mapping[i].projplane[0] = mttmp->projx;
material->mapping[i].projplane[1] = mttmp->projy;
material->mapping[i].projplane[2] = mttmp->projz;
/// --------------------------------
switch( mttmp->blendtype ) {
case MTEX_BLEND:
material->blend_mode[i] = BLEND_MIX;
break;
case MTEX_MUL:
material->blend_mode[i] = BLEND_MUL;
break;
case MTEX_ADD:
material->blend_mode[i] = BLEND_ADD;
break;
case MTEX_SUB:
material->blend_mode[i] = BLEND_SUB;
break;
case MTEX_SCREEN:
material->blend_mode[i] = BLEND_SCR;
break;
}
valid_index++;
}
}
}
// above one tex the switches here
// are not used
switch(valid_index) {
case 0:
material->IdMode = DEFAULT_BLENDER;
break;
case 1:
material->IdMode = ONETEX;
break;
default:
material->IdMode = GREATERTHAN2;
break;
}
material->SetUsers(mat->id.us);
material->num_enabled = valid_index;
material->speccolor[0] = mat->specr;
material->speccolor[1] = mat->specg;
material->speccolor[2] = mat->specb;
material->hard = (float)mat->har/4.0f;
material->matcolor[0] = mat->r;
material->matcolor[1] = mat->g;
material->matcolor[2] = mat->b;
material->matcolor[3] = mat->alpha;
material->alpha = mat->alpha;
material->emit = mat->emit;
material->spec_f = mat->spec;
material->ref = mat->ref;
material->amb = mat->amb;
material->ras_mode |= (mat->material_type == MA_TYPE_WIRE)? WIRE: 0;
}
else { // No Material
int valid = 0;
// check for tface tex to fallback on
if ( validface ) {
material->img[0] = (Image*)(tface->tpage);
// ------------------------
if (material->img[0]) {
material->texname[0] = material->img[0]->id.name;
material->mapping[0].mapping |= ( (material->img[0]->flag & IMA_REFLECT)!=0 )?USEREFL:0;
/* see if depth of the image is 32bits */
if (BKE_image_has_alpha(material->img[0])) {
material->flag[0] |= USEALPHA;
material->alphablend = GEMAT_ALPHA;
}
else
material->alphablend = GEMAT_SOLID;
valid++;
}
}
else
material->alphablend = GEMAT_SOLID;
material->SetUsers(-1);
material->num_enabled = valid;
material->IdMode = TEXFACE;
material->speccolor[0] = 1.f;
material->speccolor[1] = 1.f;
material->speccolor[2] = 1.f;
material->hard = 35.f;
material->matcolor[0] = 0.5f;
material->matcolor[1] = 0.5f;
material->matcolor[2] = 0.5f;
material->spec_f = 0.5f;
material->ref = 0.8f;
// No material - old default TexFace properties
material->ras_mode |= USE_LIGHT;
}
MT_Point2 uv[4];
MT_Point2 uv2[4];
const char *uvName = "", *uv2Name = "";
uv2[0]= uv2[1]= uv2[2]= uv2[3]= MT_Point2(0.0f, 0.0f);
/* No material, what to do? let's see what is in the UV and set the material accordingly
* light and visible is always on */
if ( validface ) {
material->tile = tface->tile;
uv[0].setValue(tface->uv[0]);
uv[1].setValue(tface->uv[1]);
uv[2].setValue(tface->uv[2]);
if (mface->v4)
uv[3].setValue(tface->uv[3]);
uvName = tfaceName;
}
else {
// nothing at all
material->alphablend = GEMAT_SOLID;
material->tile = 0;
uv[0]= uv[1]= uv[2]= uv[3]= MT_Point2(0.0f, 0.0f);
}
if (validmat && validface) {
material->alphablend = mat->game.alpha_blend;
}
// with ztransp enabled, enforce alpha blending mode
if (validmat && (mat->mode & MA_TRANSP) && (mat->mode & MA_ZTRANSP) && (material->alphablend == GEMAT_SOLID))
material->alphablend = GEMAT_ALPHA;
// always zsort alpha + add
if ((ELEM3(material->alphablend, GEMAT_ALPHA, GEMAT_ALPHA_SORT, GEMAT_ADD) || texalpha) && (material->alphablend != GEMAT_CLIP )) {
material->ras_mode |= ALPHA;
material->ras_mode |= (mat && (mat->game.alpha_blend & GEMAT_ALPHA_SORT))? ZSORT: 0;
}
// get uv sets
if (validmat)
{
bool isFirstSet = true;
// only two sets implemented, but any of the eight
// sets can make up the two layers
for (int vind = 0; vind<material->num_enabled; vind++)
{
BL_Mapping &map = material->mapping[vind];
if (map.uvCoName.IsEmpty())
isFirstSet = false;
else
{
for (int lay=0; lay<MAX_MTFACE; lay++)
{
MTF_localLayer& layer = layers[lay];
if (layer.face == 0) break;
if (strcmp(map.uvCoName.ReadPtr(), layer.name)==0)
{
MT_Point2 uvSet[4];
uvSet[0].setValue(layer.face->uv[0]);
uvSet[1].setValue(layer.face->uv[1]);
uvSet[2].setValue(layer.face->uv[2]);
if (mface->v4)
uvSet[3].setValue(layer.face->uv[3]);
else
uvSet[3].setValue(0.0f, 0.0f);
if (isFirstSet)
{
uv[0] = uvSet[0]; uv[1] = uvSet[1];
uv[2] = uvSet[2]; uv[3] = uvSet[3];
isFirstSet = false;
uvName = layer.name;
}
else if (strcmp(layer.name, uvName) != 0)
{
uv2[0] = uvSet[0]; uv2[1] = uvSet[1];
uv2[2] = uvSet[2]; uv2[3] = uvSet[3];
map.mapping |= USECUSTOMUV;
uv2Name = layer.name;
}
}
}
}
}
}
unsigned int rgb[4];
GetRGB(type,mface,mmcol,mat,rgb[0],rgb[1],rgb[2], rgb[3]);
// swap the material color, so MCol on bitmap font works
if (validmat && type==1 && (mat->game.flag & GEMAT_TEXT))
{
rgb[0] = KX_rgbaint2uint_new(rgb[0]);
rgb[1] = KX_rgbaint2uint_new(rgb[1]);
rgb[2] = KX_rgbaint2uint_new(rgb[2]);
rgb[3] = KX_rgbaint2uint_new(rgb[3]);
}
material->SetConversionRGB(rgb);
material->SetConversionUV(uvName, uv);
material->SetConversionUV2(uv2Name, uv2);
if (validmat)
material->matname =(mat->id.name);
if (tface) {
material->tface = *tface;
}
else {
memset(&material->tface, 0, sizeof(material->tface));
}
material->material = mat;
return true;
}
/* blenderobj can be NULL, make sure its checked for */
RAS_MeshObject* BL_ConvertMesh(Mesh* mesh, Object* blenderobj, KX_Scene* scene, KX_BlenderSceneConverter *converter)
{
RAS_MeshObject *meshobj;
int lightlayer = blenderobj ? blenderobj->lay:(1<<20)-1; // all layers if no object.
if ((meshobj = converter->FindGameMesh(mesh/*, ob->lay*/)) != NULL)
return meshobj;
// Get DerivedMesh data
DerivedMesh *dm = CDDM_from_mesh(mesh, blenderobj);
DM_ensure_tessface(dm);
MVert *mvert = dm->getVertArray(dm);
int totvert = dm->getNumVerts(dm);
MFace *mface = dm->getTessFaceArray(dm);
MTFace *tface = static_cast<MTFace*>(dm->getTessFaceDataArray(dm, CD_MTFACE));
MCol *mcol = static_cast<MCol*>(dm->getTessFaceDataArray(dm, CD_MCOL));
float (*tangent)[4] = NULL;
int totface = dm->getNumTessFaces(dm);
const char *tfaceName = "";
if (tface) {
DM_add_tangent_layer(dm);
tangent = (float(*)[4])dm->getTessFaceDataArray(dm, CD_TANGENT);
}
meshobj = new RAS_MeshObject(mesh);
// Extract avaiable layers
MTF_localLayer *layers = new MTF_localLayer[MAX_MTFACE];
for (int lay=0; lay<MAX_MTFACE; lay++) {
layers[lay].face = 0;
layers[lay].name = "";
}
int validLayers = 0;
for (int i=0; i<dm->faceData.totlayer; i++)
{
if (dm->faceData.layers[i].type == CD_MTFACE)
{
assert(validLayers <= 8);
layers[validLayers].face = (MTFace*)(dm->faceData.layers[i].data);
layers[validLayers].name = dm->faceData.layers[i].name;
if (tface == layers[validLayers].face)
tfaceName = layers[validLayers].name;
validLayers++;
}
}
meshobj->SetName(mesh->id.name + 2);
meshobj->m_sharedvertex_map.resize(totvert);
RAS_IPolyMaterial* polymat = NULL;
STR_String imastr;
// These pointers will hold persistent material structure during the conversion
// to avoid countless allocation/deallocation of memory.
BL_Material* bl_mat = NULL;
KX_BlenderMaterial* kx_blmat = NULL;
KX_PolygonMaterial* kx_polymat = NULL;
for (int f=0;f<totface;f++,mface++)
{
Material* ma = 0;
bool collider = true;
MT_Point2 uv0(0.0,0.0),uv1(0.0,0.0),uv2(0.0,0.0),uv3(0.0,0.0);
MT_Point2 uv20(0.0,0.0),uv21(0.0,0.0),uv22(0.0,0.0),uv23(0.0,0.0);
unsigned int rgb0,rgb1,rgb2,rgb3 = 0;
MT_Point3 pt0, pt1, pt2, pt3;
MT_Vector3 no0(0,0,0), no1(0,0,0), no2(0,0,0), no3(0,0,0);
MT_Vector4 tan0(0,0,0,0), tan1(0,0,0,0), tan2(0,0,0,0), tan3(0,0,0,0);
/* get coordinates, normals and tangents */
pt0.setValue(mvert[mface->v1].co);
pt1.setValue(mvert[mface->v2].co);
pt2.setValue(mvert[mface->v3].co);
if (mface->v4) pt3.setValue(mvert[mface->v4].co);
if (mface->flag & ME_SMOOTH) {
float n0[3], n1[3], n2[3], n3[3];
normal_short_to_float_v3(n0, mvert[mface->v1].no);
normal_short_to_float_v3(n1, mvert[mface->v2].no);
normal_short_to_float_v3(n2, mvert[mface->v3].no);
no0 = n0;
no1 = n1;
no2 = n2;
if (mface->v4) {
normal_short_to_float_v3(n3, mvert[mface->v4].no);
no3 = n3;
}
}
else {
float fno[3];
if (mface->v4)
normal_quad_v3(fno,mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, mvert[mface->v4].co);
else
normal_tri_v3(fno,mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co);
no0 = no1 = no2 = no3 = MT_Vector3(fno);
}
if (tangent) {
tan0 = tangent[f*4 + 0];
tan1 = tangent[f*4 + 1];
tan2 = tangent[f*4 + 2];
if (mface->v4)
tan3 = tangent[f*4 + 3];
}
if (blenderobj)
ma = give_current_material(blenderobj, mface->mat_nr+1);
else
ma = mesh->mat ? mesh->mat[mface->mat_nr]:NULL;
/* ckeck for texface since texface _only_ is used as a fallback */
if (ma == NULL && tface == NULL) {
ma= &defmaterial;
}
{
bool visible = true;
bool twoside = false;
if (converter->GetMaterials()) {
/* do Blender Multitexture and Blender GLSL materials */
unsigned int rgb[4];
MT_Point2 uv[4];
/* first is the BL_Material */
if (!bl_mat)
bl_mat = new BL_Material();
ConvertMaterial(bl_mat, ma, tface, tfaceName, mface, mcol,
layers, converter->GetGLSLMaterials());
/* vertex colors and uv's were stored in bl_mat temporarily */
bl_mat->GetConversionRGB(rgb);
rgb0 = rgb[0]; rgb1 = rgb[1];
rgb2 = rgb[2]; rgb3 = rgb[3];
bl_mat->GetConversionUV(uv);
uv0 = uv[0]; uv1 = uv[1];
uv2 = uv[2]; uv3 = uv[3];
bl_mat->GetConversionUV2(uv);
uv20 = uv[0]; uv21 = uv[1];
uv22 = uv[2]; uv23 = uv[3];
/* then the KX_BlenderMaterial */
if (kx_blmat == NULL)
kx_blmat = new KX_BlenderMaterial();
kx_blmat->Initialize(scene, bl_mat, (ma?&ma->game:NULL));
polymat = static_cast<RAS_IPolyMaterial*>(kx_blmat);
}
else {
/* do Texture Face materials */
Image* bima = (tface)? (Image*)tface->tpage: NULL;
imastr = (tface)? (bima? (bima)->id.name : "" ) : "";
char alpha_blend=0;
short tile=0;
int tilexrep=4,tileyrep = 4;
/* set material properties - old TexFace */
if (ma) {
alpha_blend = ma->game.alpha_blend;
/* Commented out for now. If we ever get rid of
* "Texture Face/Singletexture" we can then think about it */
/* Texture Face mode ignores texture but requires "Face Textures to be True "*/
#if 0
if ((ma->mode &MA_FACETEXTURE)==0 && (ma->game.flag &GEMAT_TEXT)==0) {
bima = NULL;
imastr = "";
alpha_blend = GEMAT_SOLID;
}
else {
alpha_blend = ma->game.alpha_blend;
}
#endif
}
/* check for tface tex to fallback on */
else {
if (bima) {
/* see if depth of the image is 32 */
if (BKE_image_has_alpha(bima))
alpha_blend = GEMAT_ALPHA;
else
alpha_blend = GEMAT_SOLID;
}
else {
alpha_blend = GEMAT_SOLID;
}
}
if (bima) {
tilexrep = bima->xrep;
tileyrep = bima->yrep;
}
/* set UV properties */
if (tface) {
uv0.setValue(tface->uv[0]);
uv1.setValue(tface->uv[1]);
uv2.setValue(tface->uv[2]);
if (mface->v4)
uv3.setValue(tface->uv[3]);
tile = tface->tile;
}
else {
/* no texfaces */
tile = 0;
}
/* get vertex colors */
if (mcol) {
/* we have vertex colors */
rgb0 = KX_Mcol2uint_new(mcol[0]);
rgb1 = KX_Mcol2uint_new(mcol[1]);
rgb2 = KX_Mcol2uint_new(mcol[2]);
if (mface->v4)
rgb3 = KX_Mcol2uint_new(mcol[3]);
}
else {
/* no vertex colors, take from material, otherwise white */
unsigned int color = 0xFFFFFFFFL;
if (ma)
{
union
{
unsigned char cp[4];
unsigned int integer;
} col_converter;
col_converter.cp[3] = (unsigned char) (ma->r * 255.0f);
col_converter.cp[2] = (unsigned char) (ma->g * 255.0f);
col_converter.cp[1] = (unsigned char) (ma->b * 255.0f);
col_converter.cp[0] = (unsigned char) (ma->alpha * 255.0f);
color = col_converter.integer;
}
rgb0 = KX_rgbaint2uint_new(color);
rgb1 = KX_rgbaint2uint_new(color);
rgb2 = KX_rgbaint2uint_new(color);
if (mface->v4)
rgb3 = KX_rgbaint2uint_new(color);
}
// only zsort alpha + add
bool alpha = ELEM3(alpha_blend, GEMAT_ALPHA, GEMAT_ADD, GEMAT_ALPHA_SORT);
bool zsort = (alpha_blend == GEMAT_ALPHA_SORT);
bool light = (ma)?(ma->mode & MA_SHLESS)==0:default_light_mode;
// don't need zort anymore, deal as if it it's alpha blend
if (alpha_blend == GEMAT_ALPHA_SORT) alpha_blend = GEMAT_ALPHA;
if (kx_polymat == NULL)
kx_polymat = new KX_PolygonMaterial();
kx_polymat->Initialize(imastr, ma, (int)mface->mat_nr,
tile, tilexrep, tileyrep,
alpha_blend, alpha, zsort, light, lightlayer, tface, (unsigned int*)mcol);
polymat = static_cast<RAS_IPolyMaterial*>(kx_polymat);
if (ma) {
polymat->m_specular = MT_Vector3(ma->specr, ma->specg, ma->specb)*ma->spec;
polymat->m_shininess = (float)ma->har/4.0f; // 0 < ma->har <= 512
polymat->m_diffuse = MT_Vector3(ma->r, ma->g, ma->b)*(ma->emit + ma->ref);
}
else {
polymat->m_specular.setValue(0.0f,0.0f,0.0f);
polymat->m_shininess = 35.0;
}
}
// set render flags
if (ma)
{
visible = ((ma->game.flag & GEMAT_INVISIBLE)==0);
twoside = ((ma->game.flag & GEMAT_BACKCULL)==0);
collider = ((ma->game.flag & GEMAT_NOPHYSICS)==0);
}
else {
visible = true;
twoside = false;
collider = true;
}
/* mark face as flat, so vertices are split */
bool flat = (mface->flag & ME_SMOOTH) == 0;
// see if a bucket was reused or a new one was created
// this way only one KX_BlenderMaterial object has to exist per bucket
bool bucketCreated;
RAS_MaterialBucket* bucket = scene->FindBucket(polymat, bucketCreated);
if (bucketCreated) {
// this is needed to free up memory afterwards
converter->RegisterPolyMaterial(polymat);
if (converter->GetMaterials()) {
converter->RegisterBlenderMaterial(bl_mat);
// the poly material has been stored in the bucket, next time we must create a new one
bl_mat = NULL;
kx_blmat = NULL;
} else {
// the poly material has been stored in the bucket, next time we must create a new one
kx_polymat = NULL;
}
} else {
// from now on, use the polygon material from the material bucket
polymat = bucket->GetPolyMaterial();
// keep the material pointers, they will be reused for next face
}
int nverts = (mface->v4)? 4: 3;
RAS_Polygon *poly = meshobj->AddPolygon(bucket, nverts);
poly->SetVisible(visible);
poly->SetCollider(collider);
poly->SetTwoside(twoside);
//poly->SetEdgeCode(mface->edcode);
meshobj->AddVertex(poly,0,pt0,uv0,uv20,tan0,rgb0,no0,flat,mface->v1);
meshobj->AddVertex(poly,1,pt1,uv1,uv21,tan1,rgb1,no1,flat,mface->v2);
meshobj->AddVertex(poly,2,pt2,uv2,uv22,tan2,rgb2,no2,flat,mface->v3);
if (nverts==4)
meshobj->AddVertex(poly,3,pt3,uv3,uv23,tan3,rgb3,no3,flat,mface->v4);
}
if (tface)
tface++;
if (mcol)
mcol+=4;
for (int lay=0; lay<MAX_MTFACE; lay++)
{
MTF_localLayer &layer = layers[lay];
if (layer.face == 0) break;
layer.face++;
}
}
// keep meshobj->m_sharedvertex_map for reinstance phys mesh.
// 2.49a and before it did: meshobj->m_sharedvertex_map.clear();
// but this didnt save much ram. - Campbell
meshobj->EndConversion();
// pre calculate texture generation
for (list<RAS_MeshMaterial>::iterator mit = meshobj->GetFirstMaterial();
mit != meshobj->GetLastMaterial(); ++ mit) {
mit->m_bucket->GetPolyMaterial()->OnConstruction(lightlayer);
}
if (layers)
delete []layers;
dm->release(dm);
// cleanup material
if (bl_mat)
delete bl_mat;
if (kx_blmat)
delete kx_blmat;
if (kx_polymat)
delete kx_polymat;
converter->RegisterGameMesh(meshobj, mesh);
return meshobj;
}
static PHY_MaterialProps *CreateMaterialFromBlenderObject(struct Object* blenderobject)
{
PHY_MaterialProps *materialProps = new PHY_MaterialProps;
MT_assert(materialProps && "Create physics material properties failed");
Material* blendermat = give_current_material(blenderobject, 0);
if (blendermat)
{
MT_assert(0.0f <= blendermat->reflect && blendermat->reflect <= 1.0f);
materialProps->m_restitution = blendermat->reflect;
materialProps->m_friction = blendermat->friction;
materialProps->m_fh_spring = blendermat->fh;
materialProps->m_fh_damping = blendermat->xyfrict;
materialProps->m_fh_distance = blendermat->fhdist;
materialProps->m_fh_normal = (blendermat->dynamode & MA_FH_NOR) != 0;
}
else {
//give some defaults
materialProps->m_restitution = 0.f;
materialProps->m_friction = 0.5;
materialProps->m_fh_spring = 0.f;
materialProps->m_fh_damping = 0.f;
materialProps->m_fh_distance = 0.f;
materialProps->m_fh_normal = false;
}
return materialProps;
}
static PHY_ShapeProps *CreateShapePropsFromBlenderObject(struct Object* blenderobject)
{
PHY_ShapeProps *shapeProps = new PHY_ShapeProps;
MT_assert(shapeProps);
shapeProps->m_mass = blenderobject->mass;
// This needs to be fixed in blender. For now, we use:
// in Blender, inertia stands for the size value which is equivalent to
// the sphere radius
shapeProps->m_inertia = blenderobject->formfactor;
MT_assert(0.0f <= blenderobject->damping && blenderobject->damping <= 1.0f);
MT_assert(0.0f <= blenderobject->rdamping && blenderobject->rdamping <= 1.0f);
shapeProps->m_lin_drag = 1.0f - blenderobject->damping;
shapeProps->m_ang_drag = 1.0f - blenderobject->rdamping;
shapeProps->m_friction_scaling[0] = blenderobject->anisotropicFriction[0];
shapeProps->m_friction_scaling[1] = blenderobject->anisotropicFriction[1];
shapeProps->m_friction_scaling[2] = blenderobject->anisotropicFriction[2];
shapeProps->m_do_anisotropic = ((blenderobject->gameflag & OB_ANISOTROPIC_FRICTION) != 0);
shapeProps->m_do_fh = (blenderobject->gameflag & OB_DO_FH) != 0;
shapeProps->m_do_rot_fh = (blenderobject->gameflag & OB_ROT_FH) != 0;
// velocity clamping XXX
shapeProps->m_clamp_vel_min = blenderobject->min_vel;
shapeProps->m_clamp_vel_max = blenderobject->max_vel;
// Character physics properties
shapeProps->m_step_height = blenderobject->step_height;
shapeProps->m_jump_speed = blenderobject->jump_speed;
shapeProps->m_fall_speed = blenderobject->fall_speed;
return shapeProps;
}
//////////////////////////////////////////////////////////
static float my_boundbox_mesh(Mesh *me, float *loc, float *size)
{
MVert *mvert;
BoundBox *bb;
float min[3], max[3];
float mloc[3], msize[3];
float radius=0.0f, vert_radius, *co;
int a;
if (me->bb==0) me->bb= (struct BoundBox *)MEM_callocN(sizeof(BoundBox), "boundbox");
bb= me->bb;
INIT_MINMAX(min, max);
if (!loc) loc= mloc;
if (!size) size= msize;
mvert= me->mvert;
for (a = 0; a<me->totvert; a++, mvert++) {
co = mvert->co;
/* bounds */
minmax_v3v3_v3(min, max, co);
/* radius */
vert_radius = len_squared_v3(co);
if (vert_radius > radius)
radius = vert_radius;
}
if (me->totvert) {
loc[0]= (min[0]+max[0])/2.0f;
loc[1]= (min[1]+max[1])/2.0f;
loc[2]= (min[2]+max[2])/2.0f;
size[0]= (max[0]-min[0])/2.0f;
size[1]= (max[1]-min[1])/2.0f;
size[2]= (max[2]-min[2])/2.0f;
}
else {
loc[0]= loc[1]= loc[2]= 0.0f;
size[0]= size[1]= size[2]= 0.0f;
}
bb->vec[0][0]=bb->vec[1][0]=bb->vec[2][0]=bb->vec[3][0]= loc[0]-size[0];
bb->vec[4][0]=bb->vec[5][0]=bb->vec[6][0]=bb->vec[7][0]= loc[0]+size[0];
bb->vec[0][1]=bb->vec[1][1]=bb->vec[4][1]=bb->vec[5][1]= loc[1]-size[1];
bb->vec[2][1]=bb->vec[3][1]=bb->vec[6][1]=bb->vec[7][1]= loc[1]+size[1];
bb->vec[0][2]=bb->vec[3][2]=bb->vec[4][2]=bb->vec[7][2]= loc[2]-size[2];
bb->vec[1][2]=bb->vec[2][2]=bb->vec[5][2]=bb->vec[6][2]= loc[2]+size[2];
return sqrt(radius);
}
static void my_tex_space_mesh(Mesh *me)
{
KeyBlock *kb;
float *fp, loc[3], size[3], min[3], max[3];
int a;
my_boundbox_mesh(me, loc, size);
if (me->texflag & ME_AUTOSPACE) {
if (me->key) {
kb= me->key->refkey;
if (kb) {
INIT_MINMAX(min, max);
fp= (float *)kb->data;
for (a=0; a<kb->totelem; a++, fp += 3) {
minmax_v3v3_v3(min, max, fp);
}
if (kb->totelem) {
loc[0]= (min[0]+max[0])/2.0f; loc[1]= (min[1]+max[1])/2.0f; loc[2]= (min[2]+max[2])/2.0f;
size[0]= (max[0]-min[0])/2.0f; size[1]= (max[1]-min[1])/2.0f; size[2]= (max[2]-min[2])/2.0f;
}
else {
loc[0]= loc[1]= loc[2]= 0.0;
size[0]= size[1]= size[2]= 0.0;
}
}
}
copy_v3_v3(me->loc, loc);
copy_v3_v3(me->size, size);
me->rot[0]= me->rot[1]= me->rot[2]= 0.0f;
if (me->size[0] == 0.0f) me->size[0] = 1.0f;
else if (me->size[0] > 0.0f && me->size[0]< 0.00001f) me->size[0]= 0.00001f;
else if (me->size[0] < 0.0f && me->size[0]> -0.00001f) me->size[0]= -0.00001f;
if (me->size[1] == 0.0f) me->size[1]= 1.0f;
else if (me->size[1] > 0.0f && me->size[1]< 0.00001f) me->size[1]= 0.00001f;
else if (me->size[1] < 0.0f && me->size[1]> -0.00001f) me->size[1]= -0.00001f;
if (me->size[2] == 0.0f) me->size[2]= 1.0f;
else if (me->size[2] > 0.0f && me->size[2]< 0.00001f) me->size[2]= 0.00001f;
else if (me->size[2] < 0.0f && me->size[2]> -0.00001f) me->size[2]= -0.00001f;
}
}
static void my_get_local_bounds(Object *ob, DerivedMesh *dm, float *center, float *size)
{
BoundBox *bb= NULL;
/* uses boundbox, function used by Ketsji */
switch (ob->type)
{
case OB_MESH:
if (dm)
{
float min_r[3], max_r[3];
INIT_MINMAX(min_r, max_r);
dm->getMinMax(dm, min_r, max_r);
size[0]= 0.5f*fabsf(max_r[0] - min_r[0]);
size[1]= 0.5f*fabsf(max_r[1] - min_r[1]);
size[2]= 0.5f*fabsf(max_r[2] - min_r[2]);
center[0]= 0.5f*(max_r[0] + min_r[0]);
center[1]= 0.5f*(max_r[1] + min_r[1]);
center[2]= 0.5f*(max_r[2] + min_r[2]);
return;
} else
{
bb= ( (Mesh *)ob->data )->bb;
if (bb==0)
{
my_tex_space_mesh((struct Mesh *)ob->data);
bb= ( (Mesh *)ob->data )->bb;
}
}
break;
case OB_CURVE:
case OB_SURF:
center[0]= center[1]= center[2]= 0.0;
size[0] = size[1]=size[2]=0.0;
break;
case OB_FONT:
center[0]= center[1]= center[2]= 0.0;
size[0] = size[1]=size[2]=1.0;
break;
case OB_MBALL:
bb= ob->bb;
break;
}
if (bb==NULL)
{
center[0]= center[1]= center[2]= 0.0;
size[0] = size[1]=size[2]=1.0;
}
else
{
size[0] = 0.5f * fabsf(bb->vec[0][0] - bb->vec[4][0]);
size[1] = 0.5f * fabsf(bb->vec[0][1] - bb->vec[2][1]);
size[2] = 0.5f * fabsf(bb->vec[0][2] - bb->vec[1][2]);
center[0] = 0.5f * (bb->vec[0][0] + bb->vec[4][0]);
center[1] = 0.5f * (bb->vec[0][1] + bb->vec[2][1]);
center[2] = 0.5f * (bb->vec[0][2] + bb->vec[1][2]);
}
}
//////////////////////////////////////////////////////
static void BL_CreateGraphicObjectNew(KX_GameObject* gameobj,
const MT_Point3& localAabbMin,
const MT_Point3& localAabbMax,
KX_Scene* kxscene,
bool isActive,
e_PhysicsEngine physics_engine)
{
if (gameobj->GetMeshCount() > 0)
{
switch (physics_engine)
{
#ifdef USE_BULLET
case UseBullet:
{
CcdPhysicsEnvironment* env = (CcdPhysicsEnvironment*)kxscene->GetPhysicsEnvironment();
assert(env);
PHY_IMotionState* motionstate = new KX_MotionState(gameobj->GetSGNode());
CcdGraphicController* ctrl = new CcdGraphicController(env, motionstate);
gameobj->SetGraphicController(ctrl);
ctrl->setNewClientInfo(gameobj->getClientInfo());
ctrl->setLocalAabb(localAabbMin, localAabbMax);
if (isActive) {
// add first, this will create the proxy handle, only if the object is visible
if (gameobj->GetVisible())
env->addCcdGraphicController(ctrl);
// update the mesh if there is a deformer, this will also update the bounding box for modifiers
RAS_Deformer* deformer = gameobj->GetDeformer();
if (deformer)
deformer->UpdateBuckets();
}
}
break;
#endif
default:
break;
}
}
}
static void BL_CreatePhysicsObjectNew(KX_GameObject* gameobj,
struct Object* blenderobject,
RAS_MeshObject* meshobj,
KX_Scene* kxscene,
int activeLayerBitInfo,
e_PhysicsEngine physics_engine,
KX_BlenderSceneConverter *converter,
bool processCompoundChildren
)
{
//SYS_SystemHandle syshandle = SYS_GetSystem(); /*unused*/
//int userigidbody = SYS_GetCommandLineInt(syshandle,"norigidbody",0);
//bool bRigidBody = (userigidbody == 0);
// object has physics representation?
if (!(blenderobject->gameflag & OB_COLLISION))
return;
// get Root Parent of blenderobject
struct Object* parent= blenderobject->parent;
while(parent && parent->parent) {
parent= parent->parent;
}
bool isCompoundChild = false;
bool hasCompoundChildren = !parent && (blenderobject->gameflag & OB_CHILD);
/* When the parent is not OB_DYNAMIC and has no OB_COLLISION then it gets no bullet controller
* and cant be apart of the parents compound shape */
if (parent && (parent->gameflag & (OB_DYNAMIC | OB_COLLISION))) {
if ((parent->gameflag & OB_CHILD) != 0 && (blenderobject->gameflag & OB_CHILD))
{
isCompoundChild = true;
}
}
if (processCompoundChildren != isCompoundChild)
return;
PHY_ShapeProps* shapeprops =
CreateShapePropsFromBlenderObject(blenderobject);
PHY_MaterialProps* smmaterial =
CreateMaterialFromBlenderObject(blenderobject);
KX_ObjectProperties objprop;
objprop.m_lockXaxis = (blenderobject->gameflag2 & OB_LOCK_RIGID_BODY_X_AXIS) !=0;
objprop.m_lockYaxis = (blenderobject->gameflag2 & OB_LOCK_RIGID_BODY_Y_AXIS) !=0;
objprop.m_lockZaxis = (blenderobject->gameflag2 & OB_LOCK_RIGID_BODY_Z_AXIS) !=0;
objprop.m_lockXRotaxis = (blenderobject->gameflag2 & OB_LOCK_RIGID_BODY_X_ROT_AXIS) !=0;
objprop.m_lockYRotaxis = (blenderobject->gameflag2 & OB_LOCK_RIGID_BODY_Y_ROT_AXIS) !=0;
objprop.m_lockZRotaxis = (blenderobject->gameflag2 & OB_LOCK_RIGID_BODY_Z_ROT_AXIS) !=0;
objprop.m_isCompoundChild = isCompoundChild;
objprop.m_hasCompoundChildren = hasCompoundChildren;
objprop.m_margin = blenderobject->margin;
// ACTOR is now a separate feature
objprop.m_isactor = (blenderobject->gameflag & OB_ACTOR)!=0;
objprop.m_dyna = (blenderobject->gameflag & OB_DYNAMIC) != 0;
objprop.m_softbody = (blenderobject->gameflag & OB_SOFT_BODY) != 0;
objprop.m_angular_rigidbody = (blenderobject->gameflag & OB_RIGID_BODY) != 0;
objprop.m_character = (blenderobject->gameflag & OB_CHARACTER) != 0;
///contact processing threshold is only for rigid bodies and static geometry, not 'dynamic'
if (objprop.m_angular_rigidbody || !objprop.m_dyna )
{
objprop.m_contactProcessingThreshold = blenderobject->m_contactProcessingThreshold;
} else
{
objprop.m_contactProcessingThreshold = 0.f;
}
objprop.m_sensor = (blenderobject->gameflag & OB_SENSOR) != 0;
if (objprop.m_softbody)
{
///for game soft bodies
if (blenderobject->bsoft)
{
objprop.m_gamesoftFlag = blenderobject->bsoft->flag;
///////////////////
objprop.m_soft_linStiff = blenderobject->bsoft->linStiff;
objprop.m_soft_angStiff = blenderobject->bsoft->angStiff; /* angular stiffness 0..1 */
objprop.m_soft_volume= blenderobject->bsoft->volume; /* volume preservation 0..1 */
objprop.m_soft_viterations= blenderobject->bsoft->viterations; /* Velocities solver iterations */
objprop.m_soft_piterations= blenderobject->bsoft->piterations; /* Positions solver iterations */
objprop.m_soft_diterations= blenderobject->bsoft->diterations; /* Drift solver iterations */
objprop.m_soft_citerations= blenderobject->bsoft->citerations; /* Cluster solver iterations */
objprop.m_soft_kSRHR_CL= blenderobject->bsoft->kSRHR_CL; /* Soft vs rigid hardness [0,1] (cluster only) */
objprop.m_soft_kSKHR_CL= blenderobject->bsoft->kSKHR_CL; /* Soft vs kinetic hardness [0,1] (cluster only) */
objprop.m_soft_kSSHR_CL= blenderobject->bsoft->kSSHR_CL; /* Soft vs soft hardness [0,1] (cluster only) */
objprop.m_soft_kSR_SPLT_CL= blenderobject->bsoft->kSR_SPLT_CL; /* Soft vs rigid impulse split [0,1] (cluster only) */
objprop.m_soft_kSK_SPLT_CL= blenderobject->bsoft->kSK_SPLT_CL; /* Soft vs rigid impulse split [0,1] (cluster only) */
objprop.m_soft_kSS_SPLT_CL= blenderobject->bsoft->kSS_SPLT_CL; /* Soft vs rigid impulse split [0,1] (cluster only) */
objprop.m_soft_kVCF= blenderobject->bsoft->kVCF; /* Velocities correction factor (Baumgarte) */
objprop.m_soft_kDP= blenderobject->bsoft->kDP; /* Damping coefficient [0,1] */
objprop.m_soft_kDG= blenderobject->bsoft->kDG; /* Drag coefficient [0,+inf] */
objprop.m_soft_kLF= blenderobject->bsoft->kLF; /* Lift coefficient [0,+inf] */
objprop.m_soft_kPR= blenderobject->bsoft->kPR; /* Pressure coefficient [-inf,+inf] */
objprop.m_soft_kVC= blenderobject->bsoft->kVC; /* Volume conversation coefficient [0,+inf] */
objprop.m_soft_kDF= blenderobject->bsoft->kDF; /* Dynamic friction coefficient [0,1] */
objprop.m_soft_kMT= blenderobject->bsoft->kMT; /* Pose matching coefficient [0,1] */
objprop.m_soft_kCHR= blenderobject->bsoft->kCHR; /* Rigid contacts hardness [0,1] */
objprop.m_soft_kKHR= blenderobject->bsoft->kKHR; /* Kinetic contacts hardness [0,1] */
objprop.m_soft_kSHR= blenderobject->bsoft->kSHR; /* Soft contacts hardness [0,1] */
objprop.m_soft_kAHR= blenderobject->bsoft->kAHR; /* Anchors hardness [0,1] */
objprop.m_soft_collisionflags= blenderobject->bsoft->collisionflags; /* Vertex/Face or Signed Distance Field(SDF) or Clusters, Soft versus Soft or Rigid */
objprop.m_soft_numclusteriterations= blenderobject->bsoft->numclusteriterations; /* number of iterations to refine collision clusters*/
//objprop.m_soft_welding = blenderobject->bsoft->welding; /* welding */
/* disable welding: it doesn't bring any additional stability and it breaks the relation between soft body collision shape and graphic mesh */
objprop.m_soft_welding = 0.f;
objprop.m_margin = blenderobject->bsoft->margin;
objprop.m_contactProcessingThreshold = 0.f;
} else
{
objprop.m_gamesoftFlag = OB_BSB_BENDING_CONSTRAINTS | OB_BSB_SHAPE_MATCHING | OB_BSB_AERO_VPOINT;
objprop.m_soft_linStiff = 0.5;
objprop.m_soft_angStiff = 1.f; /* angular stiffness 0..1 */
objprop.m_soft_volume= 1.f; /* volume preservation 0..1 */
objprop.m_soft_viterations= 0;
objprop.m_soft_piterations= 1;
objprop.m_soft_diterations= 0;
objprop.m_soft_citerations= 4;
objprop.m_soft_kSRHR_CL= 0.1f;
objprop.m_soft_kSKHR_CL= 1.f;
objprop.m_soft_kSSHR_CL= 0.5;
objprop.m_soft_kSR_SPLT_CL= 0.5f;
objprop.m_soft_kSK_SPLT_CL= 0.5f;
objprop.m_soft_kSS_SPLT_CL= 0.5f;
objprop.m_soft_kVCF= 1;
objprop.m_soft_kDP= 0;
objprop.m_soft_kDG= 0;
objprop.m_soft_kLF= 0;
objprop.m_soft_kPR= 0;
objprop.m_soft_kVC= 0;
objprop.m_soft_kDF= 0.2f;
objprop.m_soft_kMT= 0.05f;
objprop.m_soft_kCHR= 1.0f;
objprop.m_soft_kKHR= 0.1f;
objprop.m_soft_kSHR= 1.f;
objprop.m_soft_kAHR= 0.7f;
objprop.m_soft_collisionflags= OB_BSB_COL_SDF_RS + OB_BSB_COL_VF_SS;
objprop.m_soft_numclusteriterations= 16;
objprop.m_soft_welding = 0.f;
objprop.m_margin = 0.f;
objprop.m_contactProcessingThreshold = 0.f;
}
}
objprop.m_ghost = (blenderobject->gameflag & OB_GHOST) != 0;
objprop.m_disableSleeping = (blenderobject->gameflag & OB_COLLISION_RESPONSE) != 0;//abuse the OB_COLLISION_RESPONSE flag
//mmm, for now, taks this for the size of the dynamicobject
// Blender uses inertia for radius of dynamic object
objprop.m_radius = blenderobject->inertia;
objprop.m_in_active_layer = (blenderobject->lay & activeLayerBitInfo) != 0;
objprop.m_dynamic_parent=NULL;
objprop.m_isdeformable = ((blenderobject->gameflag2 & 2)) != 0;
objprop.m_boundclass = objprop.m_dyna?KX_BOUNDSPHERE:KX_BOUNDMESH;
if ((blenderobject->gameflag & OB_SOFT_BODY) && !(blenderobject->gameflag & OB_BOUNDS))
{
objprop.m_boundclass = KX_BOUNDMESH;
}
if ((blenderobject->gameflag & OB_CHARACTER) && !(blenderobject->gameflag & OB_BOUNDS))
{
objprop.m_boundclass = KX_BOUNDSPHERE;
}
KX_BoxBounds bb;
DerivedMesh* dm = NULL;
if (gameobj->GetDeformer())
dm = gameobj->GetDeformer()->GetPhysicsMesh();
my_get_local_bounds(blenderobject,dm,objprop.m_boundobject.box.m_center,bb.m_extends);
if (blenderobject->gameflag & OB_BOUNDS)
{
switch (blenderobject->collision_boundtype)
{
case OB_BOUND_BOX:
objprop.m_boundclass = KX_BOUNDBOX;
//mmm, has to be divided by 2 to be proper extends
objprop.m_boundobject.box.m_extends[0]=2.f*bb.m_extends[0];
objprop.m_boundobject.box.m_extends[1]=2.f*bb.m_extends[1];
objprop.m_boundobject.box.m_extends[2]=2.f*bb.m_extends[2];
break;
case OB_BOUND_CONVEX_HULL:
if (blenderobject->type == OB_MESH)
{
objprop.m_boundclass = KX_BOUNDPOLYTOPE;
break;
}
// Object is not a mesh... fall through OB_BOUND_TRIANGLE_MESH to
// OB_BOUND_SPHERE
case OB_BOUND_TRIANGLE_MESH:
if (blenderobject->type == OB_MESH)
{
objprop.m_boundclass = KX_BOUNDMESH;
break;
}
// Object is not a mesh... can't use polyhedron.
// Fall through and become a sphere.
case OB_BOUND_SPHERE:
{
objprop.m_boundclass = KX_BOUNDSPHERE;
objprop.m_boundobject.c.m_radius = MT_max(bb.m_extends[0], MT_max(bb.m_extends[1], bb.m_extends[2]));
break;
}
case OB_BOUND_CYLINDER:
{
objprop.m_boundclass = KX_BOUNDCYLINDER;
objprop.m_boundobject.c.m_radius = MT_max(bb.m_extends[0], bb.m_extends[1]);
objprop.m_boundobject.c.m_height = 2.f*bb.m_extends[2];
break;
}
case OB_BOUND_CONE:
{
objprop.m_boundclass = KX_BOUNDCONE;
objprop.m_boundobject.c.m_radius = MT_max(bb.m_extends[0], bb.m_extends[1]);
objprop.m_boundobject.c.m_height = 2.f*bb.m_extends[2];
break;
}
case OB_BOUND_CAPSULE:
{
objprop.m_boundclass = KX_BOUNDCAPSULE;
objprop.m_boundobject.c.m_radius = MT_max(bb.m_extends[0], bb.m_extends[1]);
objprop.m_boundobject.c.m_height = 2.f*(bb.m_extends[2]-objprop.m_boundobject.c.m_radius);
if (objprop.m_boundobject.c.m_height < 0.f)
objprop.m_boundobject.c.m_height = 0.f;
break;
}
}
}
if (parent/* && (parent->gameflag & OB_DYNAMIC)*/) {
// parented object cannot be dynamic
KX_GameObject *parentgameobject = converter->FindGameObject(parent);
objprop.m_dynamic_parent = parentgameobject;
//cannot be dynamic:
objprop.m_dyna = false;
objprop.m_softbody = false;
shapeprops->m_mass = 0.f;
}
objprop.m_concave = (blenderobject->collision_boundtype == OB_BOUND_TRIANGLE_MESH);
switch (physics_engine)
{
#ifdef USE_BULLET
case UseBullet:
KX_ConvertBulletObject(gameobj, meshobj, dm, kxscene, shapeprops, smmaterial, &objprop);
break;
#endif
case UseNone:
default:
break;
}
delete shapeprops;
delete smmaterial;
if (dm) {
dm->needsFree = 1;
dm->release(dm);
}
}
static KX_LightObject *gamelight_from_blamp(Object *ob, Lamp *la, unsigned int layerflag, KX_Scene *kxscene, RAS_IRenderTools *rendertools, KX_BlenderSceneConverter *converter)
{
RAS_LightObject lightobj;
KX_LightObject *gamelight;
lightobj.m_att1 = la->att1;
lightobj.m_att2 = (la->mode & LA_QUAD) ? la->att2 : 0.0f;
lightobj.m_red = la->r;
lightobj.m_green = la->g;
lightobj.m_blue = la->b;
lightobj.m_distance = la->dist;
lightobj.m_energy = la->energy;
lightobj.m_layer = layerflag;
lightobj.m_spotblend = la->spotblend;
lightobj.m_spotsize = la->spotsize;
lightobj.m_nodiffuse = (la->mode & LA_NO_DIFF) != 0;
lightobj.m_nospecular = (la->mode & LA_NO_SPEC) != 0;
bool glslmat = converter->GetGLSLMaterials();
// in GLSL NEGATIVE LAMP is handled inside the lamp update function
if (glslmat==0) {
if (la->mode & LA_NEG)
{
lightobj.m_red = -lightobj.m_red;
lightobj.m_green = -lightobj.m_green;
lightobj.m_blue = -lightobj.m_blue;
}
}
if (la->type==LA_SUN) {
lightobj.m_type = RAS_LightObject::LIGHT_SUN;
} else if (la->type==LA_SPOT) {
lightobj.m_type = RAS_LightObject::LIGHT_SPOT;
} else {
lightobj.m_type = RAS_LightObject::LIGHT_NORMAL;
}
gamelight = new KX_LightObject(kxscene, KX_Scene::m_callbacks, rendertools,
lightobj, glslmat);
return gamelight;
}
static KX_Camera *gamecamera_from_bcamera(Object *ob, KX_Scene *kxscene, KX_BlenderSceneConverter *converter)
{
Camera* ca = static_cast<Camera*>(ob->data);
RAS_CameraData camdata(ca->lens, ca->ortho_scale, ca->sensor_x, ca->sensor_y, ca->sensor_fit, ca->clipsta, ca->clipend, ca->type == CAM_PERSP, ca->YF_dofdist);
KX_Camera *gamecamera;
gamecamera= new KX_Camera(kxscene, KX_Scene::m_callbacks, camdata);
gamecamera->SetName(ca->id.name + 2);
return gamecamera;
}
static KX_GameObject *gameobject_from_blenderobject(
Object *ob,
KX_Scene *kxscene,
RAS_IRenderTools *rendertools,
KX_BlenderSceneConverter *converter)
{
KX_GameObject *gameobj = NULL;
Scene *blenderscene = kxscene->GetBlenderScene();
switch(ob->type)
{
case OB_LAMP:
{
KX_LightObject* gamelight = gamelight_from_blamp(ob, static_cast<Lamp*>(ob->data), ob->lay, kxscene, rendertools, converter);
gameobj = gamelight;
if (blenderscene->lay & ob->lay)
{
gamelight->AddRef();
kxscene->GetLightList()->Add(gamelight);
}
break;
}
case OB_CAMERA:
{
KX_Camera* gamecamera = gamecamera_from_bcamera(ob, kxscene, converter);
gameobj = gamecamera;
//don't add a reference: the camera list in kxscene->m_cameras is not released at the end
//gamecamera->AddRef();
kxscene->AddCamera(gamecamera);
break;
}
case OB_MESH:
{
Mesh* mesh = static_cast<Mesh*>(ob->data);
float center[3], extents[3];
float radius = my_boundbox_mesh((Mesh*) ob->data, center, extents);
RAS_MeshObject* meshobj = BL_ConvertMesh(mesh,ob,kxscene,converter);
// needed for python scripting
kxscene->GetLogicManager()->RegisterMeshName(meshobj->GetName(),meshobj);
if (ob->gameflag & OB_NAVMESH)
{
gameobj = new KX_NavMeshObject(kxscene,KX_Scene::m_callbacks);
gameobj->AddMesh(meshobj);
break;
}
gameobj = new BL_DeformableGameObject(ob,kxscene,KX_Scene::m_callbacks);
// set transformation
gameobj->AddMesh(meshobj);
// for all objects: check whether they want to
// respond to updates
bool ignoreActivityCulling =
((ob->gameflag2 & OB_NEVER_DO_ACTIVITY_CULLING)!=0);
gameobj->SetIgnoreActivityCulling(ignoreActivityCulling);
gameobj->SetOccluder((ob->gameflag & OB_OCCLUDER) != 0, false);
// two options exists for deform: shape keys and armature
// only support relative shape key
bool bHasShapeKey = mesh->key != NULL && mesh->key->type==KEY_RELATIVE;
bool bHasDvert = mesh->dvert != NULL && ob->defbase.first;
bool bHasArmature = (BL_ModifierDeformer::HasArmatureDeformer(ob) && ob->parent && ob->parent->type == OB_ARMATURE && bHasDvert);
bool bHasModifier = BL_ModifierDeformer::HasCompatibleDeformer(ob);
#ifdef USE_BULLET
bool bHasSoftBody = (!ob->parent && (ob->gameflag & OB_SOFT_BODY));
#endif
if (bHasModifier) {
BL_ModifierDeformer *dcont = new BL_ModifierDeformer((BL_DeformableGameObject *)gameobj,
kxscene->GetBlenderScene(), ob, meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
if (bHasShapeKey && bHasArmature)
dcont->LoadShapeDrivers(ob->parent);
} else if (bHasShapeKey) {
// not that we can have shape keys without dvert!
BL_ShapeDeformer *dcont = new BL_ShapeDeformer((BL_DeformableGameObject*)gameobj,
ob, meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
if (bHasArmature)
dcont->LoadShapeDrivers(ob->parent);
} else if (bHasArmature) {
BL_SkinDeformer *dcont = new BL_SkinDeformer((BL_DeformableGameObject*)gameobj,
ob, meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
} else if (bHasDvert) {
// this case correspond to a mesh that can potentially deform but not with the
// object to which it is attached for the moment. A skin mesh was created in
// BL_ConvertMesh() so must create a deformer too!
BL_MeshDeformer *dcont = new BL_MeshDeformer((BL_DeformableGameObject*)gameobj,
ob, meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
#ifdef USE_BULLET
} else if (bHasSoftBody) {
KX_SoftBodyDeformer *dcont = new KX_SoftBodyDeformer(meshobj, (BL_DeformableGameObject*)gameobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
#endif
}
MT_Point3 min = MT_Point3(center) - MT_Vector3(extents);
MT_Point3 max = MT_Point3(center) + MT_Vector3(extents);
SG_BBox bbox = SG_BBox(min, max);
gameobj->GetSGNode()->SetBBox(bbox);
gameobj->GetSGNode()->SetRadius(radius);
break;
}
case OB_ARMATURE:
{
bArmature *arm = (bArmature*)ob->data;
gameobj = new BL_ArmatureObject(
kxscene,
KX_Scene::m_callbacks,
ob,
kxscene->GetBlenderScene(), // handle
arm->gevertdeformer
);
/* Get the current pose from the armature object and apply it as the rest pose */
break;
}
case OB_EMPTY:
{
gameobj = new KX_EmptyObject(kxscene,KX_Scene::m_callbacks);
// set transformation
break;
}
case OB_FONT:
{
/* font objects have no bounding box */
gameobj = new KX_FontObject(kxscene,KX_Scene::m_callbacks, rendertools, ob);
/* add to the list only the visible fonts */
if ((ob->lay & kxscene->GetBlenderScene()->lay) != 0)
kxscene->AddFont(static_cast<KX_FontObject*>(gameobj));
break;
}
}
if (gameobj)
{
gameobj->SetLayer(ob->lay);
gameobj->SetBlenderObject(ob);
/* set the visibility state based on the objects render option in the outliner */
if (ob->restrictflag & OB_RESTRICT_RENDER) gameobj->SetVisible(0, 0);
}
return gameobj;
}
struct parentChildLink {
struct Object* m_blenderchild;
SG_Node* m_gamechildnode;
};
#include "DNA_constraint_types.h"
//XXX #include "BIF_editconstraint.h"
static bPoseChannel *get_active_posechannel2 (Object *ob)
{
bArmature *arm= (bArmature*)ob->data;
bPoseChannel *pchan;
/* find active */
for (pchan= (bPoseChannel *)ob->pose->chanbase.first; pchan; pchan= pchan->next) {
if (pchan->bone && (pchan->bone == arm->act_bone) && (pchan->bone->layer & arm->layer))
return pchan;
}
return NULL;
}
static ListBase *get_active_constraints2(Object *ob)
{
if (!ob)
return NULL;
// XXX - shouldnt we care about the pose data and not the mode???
if (ob->mode & OB_MODE_POSE) {
bPoseChannel *pchan;
pchan = get_active_posechannel2(ob);
if (pchan)
return &pchan->constraints;
}
else
return &ob->constraints;
return NULL;
}
static void RBJconstraints(Object *ob)//not used
{
ListBase *conlist;
bConstraint *curcon;
conlist = get_active_constraints2(ob);
if (conlist) {
for (curcon = (bConstraint *)conlist->first; curcon; curcon=(bConstraint *)curcon->next) {
printf("%i\n",curcon->type);
}
}
}
#include "PHY_IPhysicsEnvironment.h"
#include "KX_IPhysicsController.h"
#include "PHY_DynamicTypes.h"
static KX_IPhysicsController* getPhId(CListValue* sumolist,STR_String busc) {//not used
for (int j=0;j<sumolist->GetCount();j++)
{
KX_GameObject* gameobje = (KX_GameObject*) sumolist->GetValue(j);
if (gameobje->GetName()==busc)
return gameobje->GetPhysicsController();
}
return 0;
}
static KX_GameObject* getGameOb(STR_String busc,CListValue* sumolist)
{
for (int j=0;j<sumolist->GetCount();j++)
{
KX_GameObject* gameobje = (KX_GameObject*) sumolist->GetValue(j);
if (gameobje->GetName()==busc)
return gameobje;
}
return 0;
}
/* helper for BL_ConvertBlenderObjects, avoids code duplication
* note: all var names match args are passed from the caller */
static void bl_ConvertBlenderObject_Single(
KX_BlenderSceneConverter *converter,
Scene *blenderscene, Object *blenderobject,
vector<MT_Vector3> &inivel, vector<MT_Vector3> &iniang,
vector<parentChildLink> &vec_parent_child,
CListValue* logicbrick_conversionlist,
CListValue* objectlist, CListValue* inactivelist, CListValue* sumolist,
KX_Scene* kxscene, KX_GameObject* gameobj,
SCA_LogicManager* logicmgr, SCA_TimeEventManager* timemgr,
bool isInActiveLayer
)
{
MT_Point3 posPrev;
MT_Matrix3x3 angor;
if (converter->addInitFromFrame) blenderscene->r.cfra=blenderscene->r.sfra;
MT_Point3 pos(
blenderobject->loc[0]+blenderobject->dloc[0],
blenderobject->loc[1]+blenderobject->dloc[1],
blenderobject->loc[2]+blenderobject->dloc[2]
);
MT_Vector3 eulxyz(blenderobject->rot);
MT_Vector3 scale(blenderobject->size);
if (converter->addInitFromFrame) {//rcruiz
float eulxyzPrev[3];
blenderscene->r.cfra=blenderscene->r.sfra-1;
//XXX update_for_newframe();
MT_Vector3 tmp=pos-MT_Point3(blenderobject->loc[0]+blenderobject->dloc[0],
blenderobject->loc[1]+blenderobject->dloc[1],
blenderobject->loc[2]+blenderobject->dloc[2]
);
eulxyzPrev[0]=blenderobject->rot[0];
eulxyzPrev[1]=blenderobject->rot[1];
eulxyzPrev[2]=blenderobject->rot[2];
double fps = (double) blenderscene->r.frs_sec/
(double) blenderscene->r.frs_sec_base;
tmp.scale(fps, fps, fps);
inivel.push_back(tmp);
tmp=eulxyz-eulxyzPrev;
tmp.scale(fps, fps, fps);
iniang.push_back(tmp);
blenderscene->r.cfra=blenderscene->r.sfra;
//XXX update_for_newframe();
}
gameobj->NodeSetLocalPosition(pos);
gameobj->NodeSetLocalOrientation(MT_Matrix3x3(eulxyz));
gameobj->NodeSetLocalScale(scale);
gameobj->NodeUpdateGS(0);
BL_ConvertMaterialIpos(blenderobject, gameobj, converter);
sumolist->Add(gameobj->AddRef());
BL_ConvertProperties(blenderobject,gameobj,timemgr,kxscene,isInActiveLayer);
gameobj->SetName(blenderobject->id.name + 2);
// update children/parent hierarchy
if ((blenderobject->parent != 0)&&(!converter->addInitFromFrame))
{
// blender has an additional 'parentinverse' offset in each object
SG_Callbacks callback(NULL,NULL,NULL,KX_Scene::KX_ScenegraphUpdateFunc,KX_Scene::KX_ScenegraphRescheduleFunc);
SG_Node* parentinversenode = new SG_Node(NULL,kxscene,callback);
// define a normal parent relationship for this node.
KX_NormalParentRelation * parent_relation = KX_NormalParentRelation::New();
parentinversenode->SetParentRelation(parent_relation);
parentChildLink pclink;
pclink.m_blenderchild = blenderobject;
pclink.m_gamechildnode = parentinversenode;
vec_parent_child.push_back(pclink);
float* fl = (float*) blenderobject->parentinv;
MT_Transform parinvtrans(fl);
parentinversenode->SetLocalPosition(parinvtrans.getOrigin());
// problem here: the parent inverse transform combines scaling and rotation
// in the basis but the scenegraph needs separate rotation and scaling.
// This is not important for OpenGL (it uses 4x4 matrix) but it is important
// for the physic engine that needs a separate scaling
//parentinversenode->SetLocalOrientation(parinvtrans.getBasis());
// Extract the rotation and the scaling from the basis
MT_Matrix3x3 ori(parinvtrans.getBasis());
MT_Vector3 x(ori.getColumn(0));
MT_Vector3 y(ori.getColumn(1));
MT_Vector3 z(ori.getColumn(2));
MT_Vector3 parscale(x.length(), y.length(), z.length());
if (!MT_fuzzyZero(parscale[0]))
x /= parscale[0];
if (!MT_fuzzyZero(parscale[1]))
y /= parscale[1];
if (!MT_fuzzyZero(parscale[2]))
z /= parscale[2];
ori.setColumn(0, x);
ori.setColumn(1, y);
ori.setColumn(2, z);
parentinversenode->SetLocalOrientation(ori);
parentinversenode->SetLocalScale(parscale);
parentinversenode->AddChild(gameobj->GetSGNode());
}
// needed for python scripting
logicmgr->RegisterGameObjectName(gameobj->GetName(),gameobj);
// needed for group duplication
logicmgr->RegisterGameObj(blenderobject, gameobj);
for (int i = 0; i < gameobj->GetMeshCount(); i++)
logicmgr->RegisterGameMeshName(gameobj->GetMesh(i)->GetName(), blenderobject);
converter->RegisterGameObject(gameobj, blenderobject);
// this was put in rapidly, needs to be looked at more closely
// only draw/use objects in active 'blender' layers
logicbrick_conversionlist->Add(gameobj->AddRef());
if (converter->addInitFromFrame) {
posPrev=gameobj->NodeGetWorldPosition();
angor=gameobj->NodeGetWorldOrientation();
}
if (isInActiveLayer)
{
objectlist->Add(gameobj->AddRef());
//tf.Add(gameobj->GetSGNode());
gameobj->NodeUpdateGS(0);
gameobj->AddMeshUser();
}
else
{
//we must store this object otherwise it will be deleted
//at the end of this function if it is not a root object
inactivelist->Add(gameobj->AddRef());
}
if (converter->addInitFromFrame) {
gameobj->NodeSetLocalPosition(posPrev);
gameobj->NodeSetLocalOrientation(angor);
}
}
// convert blender objects into ketsji gameobjects
void BL_ConvertBlenderObjects(struct Main* maggie,
KX_Scene* kxscene,
KX_KetsjiEngine* ketsjiEngine,
e_PhysicsEngine physics_engine,
RAS_IRenderTools* rendertools,
RAS_ICanvas* canvas,
KX_BlenderSceneConverter* converter,
bool alwaysUseExpandFraming
)
{
#define BL_CONVERTBLENDEROBJECT_SINGLE \
bl_ConvertBlenderObject_Single(converter, \
blenderscene, blenderobject, \
inivel, iniang, \
vec_parent_child, \
logicbrick_conversionlist, \
objectlist, inactivelist, sumolist, \
kxscene, gameobj, \
logicmgr, timemgr, \
isInActiveLayer \
)
Scene *blenderscene = kxscene->GetBlenderScene();
// for SETLOOPER
Scene *sce_iter;
Base *base;
// Get the frame settings of the canvas.
// Get the aspect ratio of the canvas as designed by the user.
RAS_FrameSettings::RAS_FrameType frame_type;
int aspect_width;
int aspect_height;
vector<MT_Vector3> inivel,iniang;
set<Group*> grouplist; // list of groups to be converted
set<Object*> allblobj; // all objects converted
set<Object*> groupobj; // objects from groups (never in active layer)
if (alwaysUseExpandFraming) {
frame_type = RAS_FrameSettings::e_frame_extend;
aspect_width = canvas->GetWidth();
aspect_height = canvas->GetHeight();
} else {
if (blenderscene->gm.framing.type == SCE_GAMEFRAMING_BARS) {
frame_type = RAS_FrameSettings::e_frame_bars;
} else if (blenderscene->gm.framing.type == SCE_GAMEFRAMING_EXTEND) {
frame_type = RAS_FrameSettings::e_frame_extend;
} else {
frame_type = RAS_FrameSettings::e_frame_scale;
}
aspect_width = (int)(blenderscene->r.xsch * blenderscene->r.xasp);
aspect_height = (int)(blenderscene->r.ysch * blenderscene->r.yasp);
}
RAS_FrameSettings frame_settings(
frame_type,
blenderscene->gm.framing.col[0],
blenderscene->gm.framing.col[1],
blenderscene->gm.framing.col[2],
aspect_width,
aspect_height
);
kxscene->SetFramingType(frame_settings);
kxscene->SetGravity(MT_Vector3(0,0, -blenderscene->gm.gravity));
/* set activity culling parameters */
kxscene->SetActivityCulling( (blenderscene->gm.mode & WO_ACTIVITY_CULLING) != 0);
kxscene->SetActivityCullingRadius(blenderscene->gm.activityBoxRadius);
kxscene->SetDbvtCulling((blenderscene->gm.mode & WO_DBVT_CULLING) != 0);
// no occlusion culling by default
kxscene->SetDbvtOcclusionRes(0);
int activeLayerBitInfo = blenderscene->lay;
// list of all object converted, active and inactive
CListValue* sumolist = new CListValue();
vector<parentChildLink> vec_parent_child;
CListValue* objectlist = kxscene->GetObjectList();
CListValue* inactivelist = kxscene->GetInactiveList();
CListValue* parentlist = kxscene->GetRootParentList();
SCA_LogicManager* logicmgr = kxscene->GetLogicManager();
SCA_TimeEventManager* timemgr = kxscene->GetTimeEventManager();
CListValue* logicbrick_conversionlist = new CListValue();
//SG_TreeFactory tf;
// Convert actions to actionmap
bAction *curAct;
for (curAct = (bAction*)maggie->action.first; curAct; curAct=(bAction*)curAct->id.next)
{
logicmgr->RegisterActionName(curAct->id.name + 2, curAct);
}
SetDefaultLightMode(blenderscene);
// Let's support scene set.
// Beware of name conflict in linked data, it will not crash but will create confusion
// in Python scripting and in certain actuators (replace mesh). Linked scene *should* have
// no conflicting name for Object, Object data and Action.
for (SETLOOPER(blenderscene, sce_iter, base))
{
Object* blenderobject = base->object;
allblobj.insert(blenderobject);
KX_GameObject* gameobj = gameobject_from_blenderobject(
base->object,
kxscene,
rendertools,
converter);
bool isInActiveLayer = (blenderobject->lay & activeLayerBitInfo) !=0;
bool addobj=true;
if (converter->addInitFromFrame)
if (!isInActiveLayer)
addobj=false;
if (gameobj)
{
if (addobj)
{ /* macro calls object conversion funcs */
BL_CONVERTBLENDEROBJECT_SINGLE;
if (gameobj->IsDupliGroup()) {
grouplist.insert(blenderobject->dup_group);
}
}
/* Note about memory leak issues:
* When a CValue derived class is created, m_refcount is initialized to 1
* so the class must be released after being used to make sure that it won't
* hang in memory. If the object needs to be stored for a long time,
* use AddRef() so that this Release() does not free the object.
* Make sure that for any AddRef() there is a Release()!!!!
* Do the same for any object derived from CValue, CExpression and NG_NetworkMessage
*/
gameobj->Release();
}
}
if (!grouplist.empty())
{
// now convert the group referenced by dupli group object
// keep track of all groups already converted
set<Group*> allgrouplist = grouplist;
set<Group*> tempglist;
// recurse
while (!grouplist.empty())
{
set<Group*>::iterator git;
tempglist.clear();
tempglist.swap(grouplist);
for (git=tempglist.begin(); git!=tempglist.end(); git++)
{
Group* group = *git;
GroupObject* go;
for (go=(GroupObject*)group->gobject.first; go; go=(GroupObject*)go->next)
{
Object* blenderobject = go->ob;
if (converter->FindGameObject(blenderobject) == NULL)
{
allblobj.insert(blenderobject);
groupobj.insert(blenderobject);
KX_GameObject* gameobj = gameobject_from_blenderobject(
blenderobject,
kxscene,
rendertools,
converter);
// this code is copied from above except that
// object from groups are never in active layer
bool isInActiveLayer = false;
bool addobj=true;
if (converter->addInitFromFrame)
if (!isInActiveLayer)
addobj=false;
if (gameobj)
{
if (addobj)
{ /* macro calls object conversion funcs */
BL_CONVERTBLENDEROBJECT_SINGLE;
}
if (gameobj->IsDupliGroup())
{
if (allgrouplist.insert(blenderobject->dup_group).second)
{
grouplist.insert(blenderobject->dup_group);
}
}
/* see comment above re: mem leaks */
gameobj->Release();
}
}
}
}
}
}
// non-camera objects not supported as camera currently
if (blenderscene->camera && blenderscene->camera->type == OB_CAMERA) {
KX_Camera *gamecamera= (KX_Camera*) converter->FindGameObject(blenderscene->camera);
if (gamecamera)
kxscene->SetActiveCamera(gamecamera);
}
// Set up armatures
set<Object*>::iterator oit;
for (oit=allblobj.begin(); oit!=allblobj.end(); oit++)
{
Object* blenderobj = *oit;
if (blenderobj->type==OB_MESH) {
Mesh *me = (Mesh*)blenderobj->data;
if (me->dvert) {
BL_DeformableGameObject *obj = (BL_DeformableGameObject*)converter->FindGameObject(blenderobj);
if (obj && BL_ModifierDeformer::HasArmatureDeformer(blenderobj) && blenderobj->parent && blenderobj->parent->type==OB_ARMATURE) {
KX_GameObject *par = converter->FindGameObject(blenderobj->parent);
if (par && obj->GetDeformer())
((BL_SkinDeformer*)obj->GetDeformer())->SetArmature((BL_ArmatureObject*) par);
}
}
}
}
// create hierarchy information
int i;
vector<parentChildLink>::iterator pcit;
for (pcit = vec_parent_child.begin();!(pcit==vec_parent_child.end());++pcit)
{
struct Object* blenderchild = pcit->m_blenderchild;
struct Object* blenderparent = blenderchild->parent;
KX_GameObject* parentobj = converter->FindGameObject(blenderparent);
KX_GameObject* childobj = converter->FindGameObject(blenderchild);
assert(childobj);
if (!parentobj || objectlist->SearchValue(childobj) != objectlist->SearchValue(parentobj))
{
// special case: the parent and child object are not in the same layer.
// This weird situation is used in Apricot for test purposes.
// Resolve it by not converting the child
childobj->GetSGNode()->DisconnectFromParent();
delete pcit->m_gamechildnode;
// Now destroy the child object but also all its descendent that may already be linked
// Remove the child reference in the local list!
// Note: there may be descendents already if the children of the child were processed
// by this loop before the child. In that case, we must remove the children also
CListValue* childrenlist = childobj->GetChildrenRecursive();
childrenlist->Add(childobj->AddRef());
for ( i=0;i<childrenlist->GetCount();i++)
{
KX_GameObject* obj = static_cast<KX_GameObject*>(childrenlist->GetValue(i));
if (sumolist->RemoveValue(obj))
obj->Release();
if (logicbrick_conversionlist->RemoveValue(obj))
obj->Release();
}
childrenlist->Release();
// now destroy recursively
converter->UnregisterGameObject(childobj); // removing objects during conversion make sure this runs too
kxscene->RemoveObject(childobj);
continue;
}
switch (blenderchild->partype)
{
case PARVERT1:
{
// creat a new vertex parent relationship for this node.
KX_VertexParentRelation * vertex_parent_relation = KX_VertexParentRelation::New();
pcit->m_gamechildnode->SetParentRelation(vertex_parent_relation);
break;
}
case PARSLOW:
{
// creat a new slow parent relationship for this node.
KX_SlowParentRelation * slow_parent_relation = KX_SlowParentRelation::New(blenderchild->sf);
pcit->m_gamechildnode->SetParentRelation(slow_parent_relation);
break;
}
case PARBONE:
{
// parent this to a bone
Bone *parent_bone = BKE_armature_find_bone_name( (bArmature *)(blenderchild->parent)->data, blenderchild->parsubstr);
if (parent_bone) {
KX_BoneParentRelation *bone_parent_relation = KX_BoneParentRelation::New(parent_bone);
pcit->m_gamechildnode->SetParentRelation(bone_parent_relation);
}
break;
}
case PARSKEL: // skinned - ignore
break;
case PAROBJECT:
case PARCURVE:
case PARKEY:
case PARVERT3:
default:
// unhandled
break;
}
parentobj-> GetSGNode()->AddChild(pcit->m_gamechildnode);
}
vec_parent_child.clear();
// find 'root' parents (object that has not parents in SceneGraph)
for (i=0;i<sumolist->GetCount();++i)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->GetSGNode()->GetSGParent() == 0)
{
parentlist->Add(gameobj->AddRef());
gameobj->NodeUpdateGS(0);
}
}
// create graphic controller for culling
if (kxscene->GetDbvtCulling())
{
bool occlusion = false;
for (i=0; i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->GetMeshCount() > 0)
{
MT_Point3 box[2];
gameobj->GetSGNode()->BBox().getmm(box, MT_Transform::Identity());
// box[0] is the min, box[1] is the max
bool isactive = objectlist->SearchValue(gameobj);
BL_CreateGraphicObjectNew(gameobj,box[0],box[1],kxscene,isactive,physics_engine);
if (gameobj->GetOccluder())
occlusion = true;
}
}
if (occlusion)
kxscene->SetDbvtOcclusionRes(blenderscene->gm.occlusionRes);
}
if (blenderscene->world)
kxscene->GetPhysicsEnvironment()->setNumTimeSubSteps(blenderscene->gm.physubstep);
// now that the scenegraph is complete, let's instantiate the deformers.
// We need that to create reusable derived mesh and physic shapes
for (i=0;i<sumolist->GetCount();++i)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->GetDeformer())
gameobj->GetDeformer()->UpdateBuckets();
}
// Set up armature constraints
for (i=0;i<sumolist->GetCount();++i)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->GetGameObjectType() == SCA_IObject::OBJ_ARMATURE)
((BL_ArmatureObject*)gameobj)->LoadConstraints(converter);
}
bool processCompoundChildren = false;
// create physics information
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
struct Object* blenderobject = gameobj->GetBlenderObject();
int nummeshes = gameobj->GetMeshCount();
RAS_MeshObject* meshobj = 0;
if (nummeshes > 0)
{
meshobj = gameobj->GetMesh(0);
}
int layerMask = (groupobj.find(blenderobject) == groupobj.end()) ? activeLayerBitInfo : 0;
BL_CreatePhysicsObjectNew(gameobj,blenderobject,meshobj,kxscene,layerMask,physics_engine,converter,processCompoundChildren);
}
processCompoundChildren = true;
// create physics information
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
struct Object* blenderobject = gameobj->GetBlenderObject();
int nummeshes = gameobj->GetMeshCount();
RAS_MeshObject* meshobj = 0;
if (nummeshes > 0)
{
meshobj = gameobj->GetMesh(0);
}
int layerMask = (groupobj.find(blenderobject) == groupobj.end()) ? activeLayerBitInfo : 0;
BL_CreatePhysicsObjectNew(gameobj,blenderobject,meshobj,kxscene,layerMask,physics_engine,converter,processCompoundChildren);
}
//set ini linearVel and int angularVel //rcruiz
if (converter->addInitFromFrame)
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->IsDynamic()) {
gameobj->setLinearVelocity(inivel[i],false);
gameobj->setAngularVelocity(iniang[i],false);
}
}
// create physics joints
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
struct Object* blenderobject = gameobj->GetBlenderObject();
ListBase *conlist;
bConstraint *curcon;
conlist = get_active_constraints2(blenderobject);
if ((gameobj->GetLayer()&activeLayerBitInfo)==0)
continue;
if (conlist) {
for (curcon = (bConstraint *)conlist->first; curcon; curcon=(bConstraint *)curcon->next) {
if (curcon->type==CONSTRAINT_TYPE_RIGIDBODYJOINT) {
bRigidBodyJointConstraint *dat=(bRigidBodyJointConstraint *)curcon->data;
if (!dat->child && !(curcon->flag & CONSTRAINT_OFF)) {
PHY_IPhysicsController* physctr2 = 0;
if (dat->tar)
{
KX_GameObject *gotar=getGameOb(dat->tar->id.name+2,sumolist);
if (gotar && ((gotar->GetLayer()&activeLayerBitInfo)!=0) && gotar->GetPhysicsController())
physctr2 = (PHY_IPhysicsController*) gotar->GetPhysicsController()->GetUserData();
}
if (gameobj->GetPhysicsController())
{
PHY_IPhysicsController* physctrl = (PHY_IPhysicsController*) gameobj->GetPhysicsController()->GetUserData();
//we need to pass a full constraint frame, not just axis
//localConstraintFrameBasis
MT_Matrix3x3 localCFrame(MT_Vector3(dat->axX,dat->axY,dat->axZ));
MT_Vector3 axis0 = localCFrame.getColumn(0);
MT_Vector3 axis1 = localCFrame.getColumn(1);
MT_Vector3 axis2 = localCFrame.getColumn(2);
int constraintId = kxscene->GetPhysicsEnvironment()->createConstraint(physctrl,physctr2,(PHY_ConstraintType)dat->type,(float)dat->pivX,
(float)dat->pivY,(float)dat->pivZ,
(float)axis0.x(),(float)axis0.y(),(float)axis0.z(),
(float)axis1.x(),(float)axis1.y(),(float)axis1.z(),
(float)axis2.x(),(float)axis2.y(),(float)axis2.z(),dat->flag);
if (constraintId)
{
//if it is a generic 6DOF constraint, set all the limits accordingly
if (dat->type == PHY_GENERIC_6DOF_CONSTRAINT)
{
int dof;
int dofbit=1;
for (dof=0;dof<6;dof++)
{
if (dat->flag & dofbit)
{
kxscene->GetPhysicsEnvironment()->setConstraintParam(constraintId,dof,dat->minLimit[dof],dat->maxLimit[dof]);
} else
{
//minLimit > maxLimit means free(disabled limit) for this degree of freedom
kxscene->GetPhysicsEnvironment()->setConstraintParam(constraintId,dof,1,-1);
}
dofbit<<=1;
}
}
else if (dat->type == PHY_CONE_TWIST_CONSTRAINT)
{
int dof;
int dofbit = 1<<3; // bitflag use_angular_limit_x
for (dof=3;dof<6;dof++)
{
if (dat->flag & dofbit)
{
kxscene->GetPhysicsEnvironment()->setConstraintParam(constraintId,dof,dat->minLimit[dof],dat->maxLimit[dof]);
}
else
{
//maxLimit < 0 means free(disabled limit) for this degree of freedom
kxscene->GetPhysicsEnvironment()->setConstraintParam(constraintId,dof,1,-1);
}
dofbit<<=1;
}
}
else if (dat->type == PHY_LINEHINGE_CONSTRAINT)
{
int dof = 3; // dof for angular x
int dofbit = 1<<3; // bitflag use_angular_limit_x
if (dat->flag & dofbit)
{
kxscene->GetPhysicsEnvironment()->setConstraintParam(constraintId,dof,
dat->minLimit[dof],dat->maxLimit[dof]);
} else
{
//minLimit > maxLimit means free(disabled limit) for this degree of freedom
kxscene->GetPhysicsEnvironment()->setConstraintParam(constraintId,dof,1,-1);
}
}
}
}
}
}
}
}
}
sumolist->Release();
// convert world
KX_WorldInfo* worldinfo = new BlenderWorldInfo(blenderscene, blenderscene->world);
converter->RegisterWorldInfo(worldinfo);
kxscene->SetWorldInfo(worldinfo);
//create object representations for obstacle simulation
KX_ObstacleSimulation* obssimulation = kxscene->GetObstacleSimulation();
if (obssimulation)
{
for ( i=0;i<objectlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(objectlist->GetValue(i));
struct Object* blenderobject = gameobj->GetBlenderObject();
if (blenderobject->gameflag & OB_HASOBSTACLE)
{
obssimulation->AddObstacleForObj(gameobj);
}
}
}
//process navigation mesh objects
for ( i=0; i<objectlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(objectlist->GetValue(i));
struct Object* blenderobject = gameobj->GetBlenderObject();
if (blenderobject->type==OB_MESH && (blenderobject->gameflag & OB_NAVMESH))
{
KX_NavMeshObject* navmesh = static_cast<KX_NavMeshObject*>(gameobj);
navmesh->SetVisible(0, true);
navmesh->BuildNavMesh();
if (obssimulation)
obssimulation->AddObstaclesForNavMesh(navmesh);
}
}
for ( i=0; i<inactivelist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(inactivelist->GetValue(i));
struct Object* blenderobject = gameobj->GetBlenderObject();
if (blenderobject->type==OB_MESH && (blenderobject->gameflag & OB_NAVMESH))
{
KX_NavMeshObject* navmesh = static_cast<KX_NavMeshObject*>(gameobj);
navmesh->SetVisible(0, true);
}
}
#define CONVERT_LOGIC
#ifdef CONVERT_LOGIC
// convert logic bricks, sensors, controllers and actuators
for (i=0;i<logicbrick_conversionlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(logicbrick_conversionlist->GetValue(i));
struct Object* blenderobj = gameobj->GetBlenderObject();
int layerMask = (groupobj.find(blenderobj) == groupobj.end()) ? activeLayerBitInfo : 0;
bool isInActiveLayer = (blenderobj->lay & layerMask)!=0;
BL_ConvertActuators(maggie->name, blenderobj,gameobj,logicmgr,kxscene,ketsjiEngine,layerMask,isInActiveLayer,rendertools,converter);
}
for ( i=0;i<logicbrick_conversionlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(logicbrick_conversionlist->GetValue(i));
struct Object* blenderobj = gameobj->GetBlenderObject();
int layerMask = (groupobj.find(blenderobj) == groupobj.end()) ? activeLayerBitInfo : 0;
bool isInActiveLayer = (blenderobj->lay & layerMask)!=0;
BL_ConvertControllers(blenderobj,gameobj,logicmgr, layerMask,isInActiveLayer,converter);
}
for ( i=0;i<logicbrick_conversionlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(logicbrick_conversionlist->GetValue(i));
struct Object* blenderobj = gameobj->GetBlenderObject();
int layerMask = (groupobj.find(blenderobj) == groupobj.end()) ? activeLayerBitInfo : 0;
bool isInActiveLayer = (blenderobj->lay & layerMask)!=0;
BL_ConvertSensors(blenderobj,gameobj,logicmgr,kxscene,ketsjiEngine,layerMask,isInActiveLayer,canvas,converter);
// set the init state to all objects
gameobj->SetInitState((blenderobj->init_state)?blenderobj->init_state:blenderobj->state);
}
// apply the initial state to controllers, only on the active objects as this registers the sensors
for ( i=0;i<objectlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(objectlist->GetValue(i));
gameobj->ResetState();
}
#endif //CONVERT_LOGIC
logicbrick_conversionlist->Release();
// Calculate the scene btree -
// too slow - commented out.
//kxscene->SetNodeTree(tf.MakeTree());
// instantiate dupli group, we will loop trough the object
// that are in active layers. Note that duplicating group
// has the effect of adding objects at the end of objectlist.
// Only loop through the first part of the list.
int objcount = objectlist->GetCount();
for (i=0;i<objcount;i++)
{
KX_GameObject* gameobj = (KX_GameObject*) objectlist->GetValue(i);
if (gameobj->IsDupliGroup())
{
kxscene->DupliGroupRecurse(gameobj, 0);
}
}
KX_Camera *activecam = kxscene->GetActiveCamera();
MT_Scalar distance = (activecam)? activecam->GetCameraFar() - activecam->GetCameraNear(): 100.0f;
RAS_BucketManager *bucketmanager = kxscene->GetBucketManager();
bucketmanager->OptimizeBuckets(distance);
}
SCA_IInputDevice::KX_EnumInputs ConvertKeyCode(int key_code)
{
return gReverseKeyTranslateTable[key_code];
}