forked from bartvdbraak/blender
27d647dcf8
* Tangent: generate a tangent direction for anisotropic shading. Can be either radial around X/Y/Z axis, or from a UV map. The default tangent for the anisotropic BSDF and geometry node is now always radial Z, for UV tangent use this node now. http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More#Tangent * Normal Map: generate a perturbed normal from an RGB normal map image. This is usually chained with an Image Texture node in the color input, to specify the normal map image. For tangent space normal maps, the UV coordinates for the image must match, and the image texture should be set to Non-Color mode to give correct results. http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More#Normal_Map * Refraction BSDF: for best results this node should be considered as a building block and not be used on its own, but rather mixed with a glossy node using a fresnel type factor. Otherwise it will give quite dark results at the edges for glossy refraction. http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Refraction * Ambient Occlusion: controls the amount of AO a surface receives, rather than having just a global factor in the world. Note that this outputs a shader and not a color, that's for another time. http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Ambient_Occlusion
202 lines
6.7 KiB
C
202 lines
6.7 KiB
C
/*
|
|
* Adapted from Open Shading Language with this license:
|
|
*
|
|
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
|
|
* All Rights Reserved.
|
|
*
|
|
* Modifications Copyright 2011, Blender Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Sony Pictures Imageworks nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __BSDF_WARD_H__
|
|
#define __BSDF_WARD_H__
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* WARD */
|
|
|
|
__device int bsdf_ward_setup(ShaderClosure *sc)
|
|
{
|
|
float ax = sc->data0;
|
|
float ay = sc->data1;
|
|
|
|
float m_ax = clamp(ax, 1e-4f, 1.0f);
|
|
float m_ay = clamp(ay, 1e-4f, 1.0f);
|
|
|
|
sc->data0 = m_ax;
|
|
sc->data1 = m_ay;
|
|
|
|
sc->type = CLOSURE_BSDF_WARD_ID;
|
|
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
|
|
}
|
|
|
|
__device void bsdf_ward_blur(ShaderClosure *sc, float roughness)
|
|
{
|
|
sc->data0 = fmaxf(roughness, sc->data0);
|
|
sc->data1 = fmaxf(roughness, sc->data1);
|
|
}
|
|
|
|
__device float3 bsdf_ward_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
float m_ax = sc->data0;
|
|
float m_ay = sc->data1;
|
|
float3 N = sc->N;
|
|
float3 T = sc->T;
|
|
|
|
float cosNO = dot(N, I);
|
|
float cosNI = dot(N, omega_in);
|
|
|
|
if(cosNI > 0.0f && cosNO > 0.0f) {
|
|
cosNO = max(cosNO, 1e-4f);
|
|
cosNI = max(cosNI, 1e-4f);
|
|
|
|
// get half vector and get x,y basis on the surface for anisotropy
|
|
float3 H = normalize(omega_in + I); // normalize needed for pdf
|
|
float3 X, Y;
|
|
make_orthonormals_tangent(N, T, &X, &Y);
|
|
// eq. 4
|
|
float dotx = dot(H, X) / m_ax;
|
|
float doty = dot(H, Y) / m_ay;
|
|
float dotn = dot(H, N);
|
|
float exp_arg = (dotx * dotx + doty * doty) / (dotn * dotn);
|
|
float denom = (4 * M_PI_F * m_ax * m_ay * sqrtf(cosNO * cosNI));
|
|
float exp_val = expf(-exp_arg);
|
|
float out = cosNI * exp_val / denom;
|
|
float oh = dot(H, I);
|
|
denom = 4 * M_PI_F * m_ax * m_ay * oh * dotn * dotn * dotn;
|
|
*pdf = exp_val / denom;
|
|
return make_float3 (out, out, out);
|
|
}
|
|
|
|
return make_float3 (0, 0, 0);
|
|
}
|
|
|
|
__device float3 bsdf_ward_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
__device int bsdf_ward_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
|
|
{
|
|
float m_ax = sc->data0;
|
|
float m_ay = sc->data1;
|
|
float3 N = sc->N;
|
|
float3 T = sc->T;
|
|
|
|
float cosNO = dot(N, I);
|
|
if(cosNO > 0.0f) {
|
|
// get x,y basis on the surface for anisotropy
|
|
float3 X, Y;
|
|
make_orthonormals_tangent(N, T, &X, &Y);
|
|
// generate random angles for the half vector
|
|
// eq. 7 (taking care around discontinuities to keep
|
|
//ttoutput angle in the right quadrant)
|
|
// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
|
|
//tttt and sin(atan(x)) == x/sqrt(1+x^2)
|
|
float alphaRatio = m_ay / m_ax;
|
|
float cosPhi, sinPhi;
|
|
if(randu < 0.25f) {
|
|
float val = 4 * randu;
|
|
float tanPhi = alphaRatio * tanf(M_PI_2_F * val);
|
|
cosPhi = 1 / sqrtf(1 + tanPhi * tanPhi);
|
|
sinPhi = tanPhi * cosPhi;
|
|
}
|
|
else if(randu < 0.5f) {
|
|
float val = 1 - 4 * (0.5f - randu);
|
|
float tanPhi = alphaRatio * tanf(M_PI_2_F * val);
|
|
// phi = M_PI_F - phi;
|
|
cosPhi = -1 / sqrtf(1 + tanPhi * tanPhi);
|
|
sinPhi = -tanPhi * cosPhi;
|
|
}
|
|
else if(randu < 0.75f) {
|
|
float val = 4 * (randu - 0.5f);
|
|
float tanPhi = alphaRatio * tanf(M_PI_2_F * val);
|
|
//phi = M_PI_F + phi;
|
|
cosPhi = -1 / sqrtf(1 + tanPhi * tanPhi);
|
|
sinPhi = tanPhi * cosPhi;
|
|
}
|
|
else {
|
|
float val = 1 - 4 * (1 - randu);
|
|
float tanPhi = alphaRatio * tanf(M_PI_2_F * val);
|
|
// phi = 2 * M_PI_F - phi;
|
|
cosPhi = 1 / sqrtf(1 + tanPhi * tanPhi);
|
|
sinPhi = -tanPhi * cosPhi;
|
|
}
|
|
// eq. 6
|
|
// we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
|
|
//tttt and sin(atan(x)) == x/sqrt(1+x^2)
|
|
float thetaDenom = (cosPhi * cosPhi) / (m_ax * m_ax) + (sinPhi * sinPhi) / (m_ay * m_ay);
|
|
float tanTheta2 = -logf(1 - randv) / thetaDenom;
|
|
float cosTheta = 1 / sqrtf(1 + tanTheta2);
|
|
float sinTheta = cosTheta * sqrtf(tanTheta2);
|
|
|
|
float3 h; // already normalized becaused expressed from spherical coordinates
|
|
h.x = sinTheta * cosPhi;
|
|
h.y = sinTheta * sinPhi;
|
|
h.z = cosTheta;
|
|
// compute terms that are easier in local space
|
|
float dotx = h.x / m_ax;
|
|
float doty = h.y / m_ay;
|
|
float dotn = h.z;
|
|
// transform to world space
|
|
h = h.x * X + h.y * Y + h.z * N;
|
|
// generate the final sample
|
|
float oh = dot(h, I);
|
|
*omega_in = 2.0f * oh * h - I;
|
|
if(dot(Ng, *omega_in) > 0) {
|
|
float cosNI = dot(N, *omega_in);
|
|
if(cosNI > 0) {
|
|
cosNO = max(cosNO, 1e-4f);
|
|
cosNI = max(cosNI, 1e-4f);
|
|
|
|
// eq. 9
|
|
float exp_arg = (dotx * dotx + doty * doty) / (dotn * dotn);
|
|
float denom = 4 * M_PI_F * m_ax * m_ay * oh * dotn * dotn * dotn;
|
|
*pdf = expf(-exp_arg) / denom;
|
|
// compiler will reuse expressions already computed
|
|
denom = (4 * M_PI_F * m_ax * m_ay * sqrtf(cosNO * cosNI));
|
|
float power = cosNI * expf(-exp_arg) / denom;
|
|
*eval = make_float3(power, power, power);
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
*domega_in_dx = (2 * dot(N, dIdx)) * N - dIdx;
|
|
*domega_in_dy = (2 * dot(N, dIdy)) * N - dIdy;
|
|
// Since there is some blur to this reflection, make the
|
|
// derivatives a bit bigger. In theory this varies with the
|
|
// roughness but the exact relationship is complex and
|
|
// requires more ops than are practical.
|
|
*domega_in_dx *= 10.0f;
|
|
*domega_in_dy *= 10.0f;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
return LABEL_REFLECT|LABEL_GLOSSY;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __BSDF_WARD_H__ */
|
|
|