forked from bartvdbraak/blender
9a1c1f132d
transmission pass and filter glossy option. The BSDF closure class is now more similar to the SVM closures, and includes some flags and labels that are needed to properly categorize the BSDF's for render passes. Phong closure is gone for the moment, needs to be adapated to the new structure still.
193 lines
6.4 KiB
C
193 lines
6.4 KiB
C
/*
|
|
* Adapted from Open Shading Language with this license:
|
|
*
|
|
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
|
|
* All Rights Reserved.
|
|
*
|
|
* Modifications Copyright 2011, Blender Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Sony Pictures Imageworks nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __BSDF_WESTIN_H__
|
|
#define __BSDF_WESTIN_H__
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* WESTIN BACKSCATTER */
|
|
|
|
__device int bsdf_westin_backscatter_setup(ShaderClosure *sc)
|
|
{
|
|
float roughness = sc->data0;
|
|
roughness = clamp(roughness, 1e-5f, 1.0f);
|
|
float m_invroughness = 1.0f/roughness;
|
|
|
|
sc->type = CLOSURE_BSDF_WESTIN_BACKSCATTER_ID;
|
|
sc->data0 = m_invroughness;
|
|
|
|
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
|
|
}
|
|
|
|
__device void bsdf_westin_backscatter_blur(ShaderClosure *sc, float roughness)
|
|
{
|
|
float m_invroughness = sc->data0;
|
|
m_invroughness = min(1.0f/roughness, m_invroughness);
|
|
sc->data0 = m_invroughness;
|
|
}
|
|
|
|
__device float3 bsdf_westin_backscatter_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
float m_invroughness = sc->data0;
|
|
float3 N = sc->N;
|
|
|
|
// pdf is implicitly 0 (no indirect sampling)
|
|
float cosNO = dot(N, I);
|
|
float cosNI = dot(N, omega_in);
|
|
if(cosNO > 0 && cosNI > 0) {
|
|
float cosine = dot(I, omega_in);
|
|
*pdf = cosine > 0 ? (m_invroughness + 1) * powf(cosine, m_invroughness) : 0;
|
|
*pdf *= 0.5f * M_1_PI_F;
|
|
return make_float3 (*pdf, *pdf, *pdf);
|
|
}
|
|
return make_float3 (0, 0, 0);
|
|
}
|
|
|
|
__device float3 bsdf_westin_backscatter_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
__device int bsdf_westin_backscatter_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
|
|
{
|
|
float m_invroughness = sc->data0;
|
|
float3 N = sc->N;
|
|
|
|
float cosNO = dot(N, I);
|
|
if(cosNO > 0) {
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
*domega_in_dx = dIdx;
|
|
*domega_in_dy = dIdy;
|
|
#endif
|
|
float3 T, B;
|
|
make_orthonormals (I, &T, &B);
|
|
float phi = 2 * M_PI_F * randu;
|
|
float cosTheta = powf(randv, 1 / (m_invroughness + 1));
|
|
float sinTheta2 = 1 - cosTheta * cosTheta;
|
|
float sinTheta = sinTheta2 > 0 ? sqrtf(sinTheta2) : 0;
|
|
*omega_in = (cosf(phi) * sinTheta) * T +
|
|
(sinf(phi) * sinTheta) * B +
|
|
(cosTheta) * I;
|
|
if(dot(Ng, *omega_in) > 0)
|
|
{
|
|
// common terms for pdf and eval
|
|
float cosNI = dot(N, *omega_in);
|
|
// make sure the direction we chose is still in the right hemisphere
|
|
if(cosNI > 0)
|
|
{
|
|
*pdf = 0.5f * M_1_PI_F * powf(cosTheta, m_invroughness);
|
|
*pdf = (m_invroughness + 1) * (*pdf);
|
|
*eval = make_float3(*pdf, *pdf, *pdf);
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
// Since there is some blur to this reflection, make the
|
|
// derivatives a bit bigger. In theory this varies with the
|
|
// exponent but the exact relationship is complex and
|
|
// requires more ops than are practical.
|
|
*domega_in_dx *= 10.0f;
|
|
*domega_in_dy *= 10.0f;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
return LABEL_REFLECT|LABEL_GLOSSY;
|
|
}
|
|
|
|
/* WESTIN SHEEN */
|
|
|
|
__device int bsdf_westin_sheen_setup(ShaderClosure *sc)
|
|
{
|
|
float edginess = sc->data0;
|
|
sc->type = CLOSURE_BSDF_WESTIN_SHEEN_ID;
|
|
sc->data0 = edginess;
|
|
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
|
|
}
|
|
|
|
__device void bsdf_westin_sheen_blur(ShaderClosure *sc, float roughness)
|
|
{
|
|
}
|
|
|
|
__device float3 bsdf_westin_sheen_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
float m_edginess = sc->data0;
|
|
float3 N = sc->N;
|
|
|
|
// pdf is implicitly 0 (no indirect sampling)
|
|
float cosNO = dot(N, I);
|
|
float cosNI = dot(N, omega_in);
|
|
if(cosNO > 0 && cosNI > 0) {
|
|
float sinNO2 = 1 - cosNO * cosNO;
|
|
*pdf = cosNI * M_1_PI_F;
|
|
float westin = sinNO2 > 0 ? powf(sinNO2, 0.5f * m_edginess) * (*pdf) : 0;
|
|
return make_float3 (westin, westin, westin);
|
|
}
|
|
return make_float3 (0, 0, 0);
|
|
}
|
|
|
|
__device float3 bsdf_westin_sheen_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
|
|
{
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
__device int bsdf_westin_sheen_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
|
|
{
|
|
float m_edginess = sc->data0;
|
|
float3 N = sc->N;
|
|
|
|
// we are viewing the surface from the right side - send a ray out with cosine
|
|
// distribution over the hemisphere
|
|
sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
|
|
if(dot(Ng, *omega_in) > 0) {
|
|
// TODO: account for sheen when sampling
|
|
float cosNO = dot(N, I);
|
|
float sinNO2 = 1 - cosNO * cosNO;
|
|
float westin = sinNO2 > 0 ? powf(sinNO2, 0.5f * m_edginess) * (*pdf) : 0;
|
|
*eval = make_float3(westin, westin, westin);
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
// TODO: find a better approximation for the diffuse bounce
|
|
*domega_in_dx = (2 * dot(N, dIdx)) * N - dIdx;
|
|
*domega_in_dy = (2 * dot(N, dIdy)) * N - dIdy;
|
|
*domega_in_dx *= 125.0f;
|
|
*domega_in_dy *= 125.0f;
|
|
#endif
|
|
}
|
|
else {
|
|
pdf = 0;
|
|
}
|
|
return LABEL_REFLECT|LABEL_DIFFUSE;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __BSDF_WESTIN_H__ */
|
|
|