blender/intern/cycles/kernel/osl/osl_services.cpp
Ton Roosendaal da376e0237 Cycles render engine, initial commit. This is the engine itself, blender modifications and build instructions will follow later.
Cycles uses code from some great open source projects, many thanks them:

* BVH building and traversal code from NVidia's "Understanding the Efficiency of Ray Traversal on GPUs":
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
* Open Shading Language for a large part of the shading system:
http://code.google.com/p/openshadinglanguage/
* Blender for procedural textures and a few other nodes.
* Approximate Catmull Clark subdivision from NVidia Mesh tools:
http://code.google.com/p/nvidia-mesh-tools/
* Sobol direction vectors from:
http://web.maths.unsw.edu.au/~fkuo/sobol/
* Film response functions from:
http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
2011-04-27 11:58:34 +00:00

425 lines
12 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <string.h>
#include "mesh.h"
#include "object.h"
#include "scene.h"
#include "osl_services.h"
#include "osl_shader.h"
#include "util_foreach.h"
#include "util_string.h"
#include "kernel_compat_cpu.h"
#include "kernel_globals.h"
#include "kernel_object.h"
#include "kernel_triangle.h"
CCL_NAMESPACE_BEGIN
/* RenderServices implementation */
#define TO_MATRIX44(m) (*(OSL::Matrix44*)&(m))
/* static ustrings */
ustring OSLRenderServices::u_distance("distance");
ustring OSLRenderServices::u_index("index");
ustring OSLRenderServices::u_camera("camera");
ustring OSLRenderServices::u_screen("screen");
ustring OSLRenderServices::u_raster("raster");
ustring OSLRenderServices::u_ndc("NDC");
ustring OSLRenderServices::u_empty;
OSLRenderServices::OSLRenderServices()
{
kernel_globals = NULL;
}
OSLRenderServices::~OSLRenderServices()
{
}
void OSLRenderServices::thread_init(KernelGlobals *kernel_globals_)
{
kernel_globals = kernel_globals_;
}
bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform, float time)
{
/* this is only used for shader and object space, we don't really have
a concept of shader space, so we just use object space for both. */
if(xform) {
KernelGlobals *kg = kernel_globals;
const ShaderData *sd = (const ShaderData*)xform;
int object = sd->object;
if(object != ~0) {
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
tfm = transform_transpose(tfm);
result = TO_MATRIX44(tfm);
return true;
}
}
return false;
}
bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform, float time)
{
/* this is only used for shader and object space, we don't really have
a concept of shader space, so we just use object space for both. */
if(xform) {
KernelGlobals *kg = kernel_globals;
const ShaderData *sd = (const ShaderData*)xform;
int object = sd->object;
if(object != ~0) {
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
tfm = transform_transpose(tfm);
result = TO_MATRIX44(tfm);
return true;
}
}
return false;
}
bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, ustring from, float time)
{
KernelGlobals *kg = kernel_globals;
if(from == u_ndc) {
Transform tfm = transform_transpose(kernel_data.cam.ndctoworld);
result = TO_MATRIX44(tfm);
return true;
}
else if(from == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.rastertoworld);
result = TO_MATRIX44(tfm);
return true;
}
else if(from == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.screentoworld);
result = TO_MATRIX44(tfm);
return true;
}
else if(from == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.cameratoworld);
result = TO_MATRIX44(tfm);
return true;
}
return false;
}
bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, ustring to, float time)
{
KernelGlobals *kg = kernel_globals;
if(to == u_ndc) {
Transform tfm = transform_transpose(kernel_data.cam.worldtondc);
result = TO_MATRIX44(tfm);
return true;
}
else if(to == u_raster) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoraster);
result = TO_MATRIX44(tfm);
return true;
}
else if(to == u_screen) {
Transform tfm = transform_transpose(kernel_data.cam.worldtoscreen);
result = TO_MATRIX44(tfm);
return true;
}
else if(to == u_camera) {
Transform tfm = transform_transpose(kernel_data.cam.worldtocamera);
result = TO_MATRIX44(tfm);
return true;
}
return false;
}
bool OSLRenderServices::get_array_attribute(void *renderstate, bool derivatives,
ustring object, TypeDesc type, ustring name,
int index, void *val)
{
return false;
}
static bool get_mesh_attribute(KernelGlobals *kg, const ShaderData *sd,
const OSLGlobals::Attribute& attr, bool derivatives, void *val)
{
if(attr.type == TypeDesc::TypeFloat) {
float *fval = (float*)val;
fval[0] = triangle_attribute_float(kg, sd, attr.elem, attr.offset,
(derivatives)? &fval[1]: NULL, (derivatives)? &fval[2]: NULL);
}
else {
float3 *fval = (float3*)val;
fval[0] = triangle_attribute_float3(kg, sd, attr.elem, attr.offset,
(derivatives)? &fval[1]: NULL, (derivatives)? &fval[2]: NULL);
}
return true;
}
static bool get_mesh_attribute_convert(KernelGlobals *kg, const ShaderData *sd,
const OSLGlobals::Attribute& attr, const TypeDesc& type, bool derivatives, void *val)
{
if(attr.type == TypeDesc::TypeFloat) {
float tmp[3];
float3 *fval = (float3*)val;
get_mesh_attribute(kg, sd, attr, derivatives, tmp);
fval[0] = make_float3(tmp[0], tmp[0], tmp[0]);
if(derivatives) {
fval[1] = make_float3(tmp[1], tmp[1], tmp[1]);
fval[2] = make_float3(tmp[2], tmp[2], tmp[2]);
}
return true;
}
else if(attr.type == TypeDesc::TypePoint || attr.type == TypeDesc::TypeVector ||
attr.type == TypeDesc::TypeNormal || attr.type == TypeDesc::TypeColor) {
float3 tmp[3];
float *fval = (float*)val;
get_mesh_attribute(kg, sd, attr, derivatives, tmp);
fval[0] = average(tmp[0]);
if(derivatives) {
fval[1] = average(tmp[1]);
fval[2] = average(tmp[2]);
}
return true;
}
else
return false;
}
static void get_object_attribute(const OSLGlobals::Attribute& attr, bool derivatives, void *val)
{
size_t datasize = attr.value.datasize();
memcpy(val, attr.value.data(), datasize);
if(derivatives)
memset((char*)val + datasize, 0, datasize*2);
}
bool OSLRenderServices::get_attribute(void *renderstate, bool derivatives, ustring object_name,
TypeDesc type, ustring name, void *val)
{
KernelGlobals *kg = kernel_globals;
const ShaderData *sd = (const ShaderData*)renderstate;
int object = sd->object;
int tri = sd->prim;
/* lookup of attribute on another object */
if(object_name != u_empty) {
OSLGlobals::ObjectNameMap::iterator it = kg->osl.object_name_map.find(object_name);
if(it == kg->osl.object_name_map.end())
return false;
object = it->second;
tri = ~0;
}
else if(object == ~0) {
/* no background attributes supported */
return false;
}
/* find attribute on object */
OSLGlobals::AttributeMap& attribute_map = kg->osl.attribute_map[object];
OSLGlobals::AttributeMap::iterator it = attribute_map.find(name);
if(it == attribute_map.end())
return false;
/* type mistmatch? */
const OSLGlobals::Attribute& attr = it->second;
if(attr.elem != ATTR_ELEMENT_VALUE) {
/* triangle and vertex attributes */
if(tri != ~0) {
if(attr.type == type || (attr.type == TypeDesc::TypeColor &&
(type == TypeDesc::TypePoint || type == TypeDesc::TypeVector || type == TypeDesc::TypeNormal)))
return get_mesh_attribute(kg, sd, attr, derivatives, val);
else
return get_mesh_attribute_convert(kg, sd, attr, type, derivatives, val);
}
}
else {
/* object attribute */
get_object_attribute(attr, derivatives, val);
return true;
}
return false;
}
bool OSLRenderServices::get_userdata(bool derivatives, ustring name, TypeDesc type,
void *renderstate, void *val)
{
return false; /* disabled by lockgeom */
}
bool OSLRenderServices::has_userdata(ustring name, TypeDesc type, void *renderstate)
{
return false; /* never called by OSL */
}
void *OSLRenderServices::get_pointcloud_attr_query(ustring *attr_names,
TypeDesc *attr_types, int nattrs)
{
#ifdef WITH_PARTIO
m_attr_queries.push_back(AttrQuery());
AttrQuery &query = m_attr_queries.back();
/* make space for what we need. the only reason to use
std::vector is to skip the delete */
query.attr_names.resize(nattrs);
query.attr_partio_types.resize(nattrs);
/* capacity will keep the length of the smallest array passed
to the query. Just to prevent buffer overruns */
query.capacity = -1;
for(int i = 0; i < nattrs; ++i)
{
query.attr_names[i] = attr_names[i];
TypeDesc element_type = attr_types[i].elementtype ();
if(query.capacity < 0)
query.capacity = attr_types[i].numelements();
else
query.capacity = min(query.capacity, (int)attr_types[i].numelements());
/* convert the OSL (OIIO) type to the equivalent Partio type so
we can do a fast check at query time. */
if(element_type == TypeDesc::TypeFloat)
query.attr_partio_types[i] = Partio::FLOAT;
else if(element_type == TypeDesc::TypeInt)
query.attr_partio_types[i] = Partio::INT;
else if(element_type == TypeDesc::TypeColor || element_type == TypeDesc::TypePoint ||
element_type == TypeDesc::TypeVector || element_type == TypeDesc::TypeNormal)
query.attr_partio_types[i] = Partio::VECTOR;
else
return NULL; /* report some error of unknown type */
}
/* this is valid until the end of RenderServices */
return &query;
#else
return NULL;
#endif
}
#ifdef WITH_PARTIO
Partio::ParticlesData *OSLRenderServices::get_pointcloud(ustring filename)
{
return Partio::readCached(filename.c_str(), true);
}
#endif
int OSLRenderServices::pointcloud(ustring filename, const OSL::Vec3 &center, float radius,
int max_points, void *_attr_query, void **attr_outdata)
{
/* todo: this code has never been tested, and most likely does not
work. it's based on the example code in OSL */
#ifdef WITH_PARTIO
/* query Partio for this pointcloud lookup using cached attr_query */
if(!_attr_query)
return 0;
AttrQuery *attr_query = (AttrQuery *)_attr_query;
if(attr_query->capacity < max_points)
return 0;
/* get the pointcloud entry for the given filename */
Partio::ParticlesData *cloud = get_pointcloud(filename);
/* now we have to look up all the attributes in the file. we can't do this
before hand cause we never know what we are going to load. */
int nattrs = attr_query->attr_names.size();
Partio::ParticleAttribute *attr = (Partio::ParticleAttribute *)alloca(sizeof(Partio::ParticleAttribute) * nattrs);
for(int i = 0; i < nattrs; ++i) {
/* special case attributes */
if(attr_query->attr_names[i] == u_distance || attr_query->attr_names[i] == u_index)
continue;
/* lookup the attribute by name*/
if(!cloud->attributeInfo(attr_query->attr_names[i].c_str(), attr[i])) {
/* issue an error here and return, types don't match */
Partio::endCachedAccess(cloud);
cloud->release();
return 0;
}
}
std::vector<Partio::ParticleIndex> indices;
std::vector<float> dist2;
Partio::beginCachedAccess(cloud);
/* finally, do the lookup */
cloud->findNPoints((const float *)&center, max_points, radius, indices, dist2);
int count = indices.size();
/* retrieve the attributes directly to user space */
for(int j = 0; j < nattrs; ++j) {
/* special cases */
if(attr_query->attr_names[j] == u_distance) {
for(int i = 0; i < count; ++i)
((float *)attr_outdata[j])[i] = sqrtf(dist2[i]);
}
else if(attr_query->attr_names[j] == u_index) {
for(int i = 0; i < count; ++i)
((int *)attr_outdata[j])[i] = indices[i];
}
else {
/* note we make a single call per attribute, we don't loop over the
points. Partio does it, so it is there that we have to care about
performance */
cloud->data(attr[j], count, &indices[0], true, attr_outdata[j]);
}
}
Partio::endCachedAccess(cloud);
cloud->release();
return count;
#else
return 0;
#endif
}
CCL_NAMESPACE_END