blender/release/scripts/bpymodules/BPyMesh.py
Campbell Barton c4b4e2922f more updates, mostly 2.3 error checking, nice messages when pythons not installed and some nendo import optimizations.
BPyMesh will work with the exception of the redux function in py2.3
2006-07-03 20:17:40 +00:00

1120 lines
27 KiB
Python

import Blender
# from BPyMesh_redux import redux # seperated because of its size.
import BPyMesh_redux
reload(BPyMesh_redux)
redux= BPyMesh_redux.redux
# python 2.3 has no reversed() iterator. this will only work on lists and tuples
try:
reversed
except:
def reversed(l): return l[::-1]
# If python version is less than 2.4, try to get set stuff from module
try:
set
except:
try:
from sets import Set as set
except:
set= None
def meshWeight2Dict(me):
''' Takes a mesh and return its group names and a list of dicts, one dict per vertex.
using the group as a key and a float value for the weight.
These 2 lists can be modified and then used with dict2MeshWeight to apply the changes.
'''
vWeightDict= [dict() for i in xrange(len(me.verts))] # Sync with vertlist.
# Clear the vert group.
groupNames= me.getVertGroupNames()
for group in groupNames:
for index, weight in me.getVertsFromGroup(group, 1): # (i,w) tuples.
vWeightDict[index][group]= weight
# removed this because me may be copying teh vertex groups.
#for group in groupNames:
# me.removeVertGroup(group)
return groupNames, vWeightDict
def dict2MeshWeight(me, groupNames, vWeightDict):
''' Takes a list of groups and a list of vertex Weight dicts as created by meshWeight2Dict
and applys it to the mesh.'''
if len(vWeightDict) != len(me.verts):
raise 'Error, Lists Differ in size, do not modify your mesh.verts before updating the weights'
# Clear the vert group.
currentGroupNames= me.getVertGroupNames()
for group in currentGroupNames:
if group not in groupNames:
me.removeVertGroup(group) # messes up the active group.
else:
me.removeVertsFromGroup(group)
# Add clean unused vert groupNames back
currentGroupNames= me.getVertGroupNames()
for group in groupNames:
if group not in currentGroupNames:
me.addVertGroup(group)
add_ = Blender.Mesh.AssignModes.ADD
vertList= [None]
for i, v in enumerate(me.verts):
vertList[0]= i
for group, weight in vWeightDict[i].iteritems():
try:
me.assignVertsToGroup(group, vertList, min(1, max(0, weight)), add_)
except:
pass # vert group is not used anymore.
me.update()
def dictWeightMerge(dict_weights):
'''
Takes dict weight list and merges into 1 weight dict item and returns it
'''
if not dict_weights:
return {}
keys= []
for weight in dict_weights:
keys.extend([ (k, 0.0) for k in weight.iterkeys() ])
new_wdict = dict(keys)
len_dict_weights= len(dict_weights)
for weight in dict_weights:
for group, value in weight.iteritems():
new_wdict[group] += value/len_dict_weights
return new_wdict
FLIPNAMES=[\
('Left','Right'),\
('_L','_R'),\
('-L','-R'),\
('.L','.R'),\
]
def dictWeightFlipGroups(dict_weight, groupNames, createNewGroups):
'''
Returns a weight with flip names
dict_weight - 1 vert weight.
groupNames - because we may need to add new group names.
dict_weight - Weather to make new groups where needed.
'''
def flipName(name):
for n1,n2 in FLIPNAMES:
for nA, nB in ( (n1,n2), (n1.lower(),n2.lower()), (n1.upper(),n2.upper()) ):
if createNewGroups:
newName= name.replace(nA,nB)
if newName!=name:
if newName not in groupNames:
groupNames.append(newName)
return newName
newName= name.replace(nB,nA)
if newName!=name:
if newName not in groupNames:
groupNames.append(newName)
return newName
else:
newName= name.replace(nA,nB)
if newName!=name and newName in groupNames:
return newName
newName= name.replace(nB,nA)
if newName!=name and newName in groupNames:
return newName
return name
if not dict_weight:
return dict_weight, groupNames
new_wdict = {}
for group, weight in dict_weight.iteritems():
flipname= flipName(group)
new_wdict[flipname]= weight
return new_wdict, groupNames
def getMeshFromObject(ob, container_mesh=None, apply_modifiers=True, vgroups=True, scn=None):
'''
ob - the object that you want to get the mesh from
container_mesh - a Blender.Mesh type mesh that is reused to avoid a new datablock per call to getMeshFromObject
apply_modifiers - if enabled, subsurf bones etc. will be applied to the returned mesh. disable to get a copy of the mesh.
vgroup - For mesh objects only, apply the vgroup to the the copied mesh. (slower)
scn - Scene type. avoids getting the current scene each time getMeshFromObject is called.
Returns Mesh or None
'''
if not scn:
scn= Blender.Scene.GetCurrent()
if not container_mesh:
mesh = Blender.Mesh.New()
else:
mesh= container_mesh
mesh.verts= None
type = ob.getType()
dataname = ob.getData(1)
tempob= None
if apply_modifiers or type != 'Mesh':
try:
mesh.getFromObject(ob.name)
except:
return None
else:
'''
Dont apply modifiers, copy the mesh.
So we can transform the data. its easiest just to get a copy of the mesh.
'''
tempob= Blender.Object.New('Mesh')
tempob.shareFrom(ob)
scn.link(tempob)
mesh.getFromObject(tempob.name)
scn.unlink(tempob)
if type == 'Mesh':
if vgroups:
if tempob==None:
tempob= Blender.Object.New('Mesh')
tempob.link(mesh)
try:
# Copy the influences if possible.
groupNames, vWeightDict= meshWeight2Dict(ob.getData(mesh=1))
dict2MeshWeight(mesh, groupNames, vWeightDict)
except:
# if the modifier changes the vert count then it messes it up for us.
pass
return mesh
def faceRayIntersect(f, orig, dir):
'''
Returns face, side
Side is the side of a quad we intersect.
side 0 == 0,1,2
side 1 == 0,2,3
'''
f_v= f.v
isect= Blender.Mathutils.Intersect(f_v[0].co, f_v[1].co, f_v[2].co, dir, orig, 1) # 1==clip
if isect:
return isect, 0
if len(f_v)==4:
isect= Blender.Mathutils.Intersect(f_v[0].co, f_v[2].co, f_v[3].co, dir, orig, 1) # 1==clip
if isect:
return isect, 1
return False, 0
def pickMeshRayFace(me, orig, dir):
best_dist= 1000000
best_isect= best_side= best_face= None
for f in me.faces:
isect, side= faceRayIntersect(f, orig, dir)
if isect:
dist= (isect-orig).length
if dist<best_dist:
best_dist= dist
best_face= f
best_side= side
best_isect= isect
f= best_face
isect= best_isect
side= best_side
if f==None:
return None, None, None, None, None
f_v= [v.co for v in f.v]
if side==1: # we can leave side 0 without changes.
f_v = f_v[0], f_v[2], f_v[3]
l0= (f_v[0]-isect).length
l1= (f_v[1]-isect).length
l2= (f_v[2]-isect).length
w0 = (l1+l2)
w1 = (l0+l2)
w2 = (l1+l2)
totw= w0 + w1 + w2
w0=w0/totw
w1=w1/totw
w2=w2/totw
return f, side, w0, w1, w2
def pickMeshGroupWeight(me, act_group, orig, dir):
f, side, w0, w1, w2= pickMeshRayFace(me, orig, dir)
f_v= f.v
if side==0:
f_vi= (f_v[0].index, f_v[1].index, f_v[2].index)
else:
f_vi= (f_v[0].index, f_v[2].index, f_v[3].index)
vws= [0.0,0.0,0.0]
for i in xrange(3):
try: vws[i]= me.getVertsFromGroup(act_group, 1, [f_vi[i],])[0][1]
except: pass
return w0*vws[0] + w1*vws[1] + w2*vws[2]
def pickMeshGroupVCol(me, orig, dir):
Vector= Blender.Mathutils.Vector
f, side, w0, w1, w2= pickMeshRayFace(me, orig, dir)
def col2vec(c):
return Vector(c.r, c.g, c.b)
if side==0:
idxs= 0,1,2
else:
idxs= 0,2,3
f_c= f.col
f_colvecs= [col2vec(f_c[i]) for i in idxs]
return f_colvecs[0]*w0 + f_colvecs[1]*w1 + f_colvecs[2]*w2
# reuse me more.
def sorted_edge_indicies(ed):
i1= ed.v1.index
i2= ed.v2.index
if i1>i2:
i1,i2= i2,i1
return i1, i2
def edge_face_users(me):
'''
Takes a mesh and returns a list aligned with the meshes edges.
Each item is a list of the faces that use the edge
would be the equiv for having ed.face_users as a property
'''
face_edges_dict= dict([(sorted_edge_indicies(ed), (ed.index, [])) for ed in me.edges])
for f in me.faces:
fvi= [v.index for v in f.v]# face vert idx's
for i in xrange(len(f)):
i1= fvi[i]
i2= fvi[i-1]
if i1>i2:
i1,i2= i2,i1
face_edges_dict[i1,i2][1].append(f)
face_edges= [None] * len(me.edges)
for ed_index, ed_faces in face_edges_dict.itervalues():
face_edges[ed_index]= ed_faces
return face_edges
def face_edges(me):
'''
Returns a list alligned to the meshes faces.
each item is a list of lists: that is
face_edges -> face indicies
face_edges[i] -> list referencs local faces v indicies 1,2,3 &| 4
face_edges[i][j] -> list of faces that this edge uses.
crap this is tricky to explain :/
'''
face_edges= [ [None] * len(f) for f in me.faces ]
face_edges_dict= dict([(sorted_edge_indicies(ed), []) for ed in me.edges])
for fidx, f in enumerate(me.faces):
fvi= [v.index for v in f.v]# face vert idx's
for i in xrange(len(f)):
i1= fvi[i]
i2= fvi[i-1]
if i1>i2:
i1,i2= i2,i1
edge_face_users= face_edges_dict[i1,i2]
edge_face_users.append(f)
face_edges[fidx][i]= edge_face_users
return face_edges
def facesPlanerIslands(me):
DotVecs= Blender.Mathutils.DotVecs
def roundvec(v):
return round(v[0], 4), round(v[1], 4), round(v[2], 4)
face_props= [(cent, no, roundvec(no), DotVecs(cent, no)) for f in me.faces for no, cent in ((f.no, f.cent),)]
face_edge_users= face_edges(me)
islands= []
used_faces= [0] * len(me.faces)
while True:
new_island= False
for i, used_val in enumerate(used_faces):
if used_val==0:
island= [i]
new_island= True
used_faces[i]= 1
break
if not new_island:
break
island_growing= True
while island_growing:
island_growing= False
for fidx1 in island[:]:
if used_faces[fidx1]==1:
used_faces[fidx1]= 2
face_prop1= face_props[fidx1]
for ed in face_edge_users[fidx1]:
for f2 in ed:
fidx2= f2.index
if fidx1 != fidx2 and used_faces[fidx2]==0:
island_growing= True
face_prop2= face_props[fidx2]
# normals are the same?
if face_prop1[2]==face_prop2[2]:
if abs(face_prop1[3] - DotVecs(face_prop1[1], face_prop2[0])) < 0.000001:
used_faces[fidx2]= 1
island.append(fidx2)
islands.append([me.faces[i] for i in island])
return islands
def facesUvIslands(me, PREF_IMAGE_DELIMIT=True):
DotVecs= Blender.Mathutils.DotVecs
def roundvec(v):
return round(v[0], 4), round(v[1], 4)
if not me.faceUV:
return [ list(me.faces), ]
# make a list of uv dicts
face_uvs= [ [roundvec(uv) for uv in f.uv] for f in me.faces]
# key - face uv || value - list of face idxs
uv_connect_dict= dict([ (uv, [] ) for f_uvs in face_uvs for uv in f_uvs])
for i, f_uvs in enumerate(face_uvs):
for uv in f_uvs: # loops through rounded uv values
uv_connect_dict[uv].append(i)
islands= []
used_faces= [0] * len(me.faces)
while True:
new_island= False
for i, used_val in enumerate(used_faces):
if used_val==0:
island= [i]
new_island= True
used_faces[i]= 1
break
if not new_island:
break
island_growing= True
while island_growing:
island_growing= False
for fidx1 in island[:]:
if used_faces[fidx1]==1:
used_faces[fidx1]= 2
for uv in face_uvs[fidx1]:
for fidx2 in uv_connect_dict[uv]:
if fidx1 != fidx2 and used_faces[fidx2]==0:
if not PREF_IMAGE_DELIMIT or me.faces[fidx1].image==me.faces[fidx2].image:
island_growing= True
used_faces[fidx2]= 1
island.append(fidx2)
islands.append([me.faces[i] for i in island])
return islands
#def faceUvBounds(me, faces= None):
def facesUvRotate(me, deg, faces= None, pivot= (0,0)):
'''
Faces can be None an all faces will be used
pivot is just the x/y well rotated about
positive deg value for clockwise rotation
'''
if faces==None: faces= me.faces
pivot= Blender.Mathutils.Vector(pivot)
rotmat= Blender.Mathutils.RotationMatrix(-deg, 2)
for f in faces:
f.uv= [((uv-pivot)*rotmat)+pivot for uv in f.uv]
def facesUvScale(me, sca, faces= None, pivot= (0,0)):
'''
Faces can be None an all faces will be used
pivot is just the x/y well rotated about
sca can be wither an int/float or a vector if you want to
scale x/y seperately.
a sca or (1.0, 1.0) will do nothing.
'''
def vecmulti(v1,v2):
'''V2 is unchanged'''
v1[:]= (v1.x*v2.x, v1.y*v2.y)
return v1
sca= Blender.Mathutils.Vector(sca)
if faces==None: faces= me.faces
pivot= Blender.Mathutils.Vector(pivot)
for f in faces:
f.uv= [vecmulti(uv-pivot, sca)+pivot for uv in f.uv]
def facesUvTranslate(me, tra, faces= None, pivot= (0,0)):
'''
Faces can be None an all faces will be used
pivot is just the x/y well rotated about
'''
if faces==None: faces= me.faces
tra= Blender.Mathutils.Vector(tra)
for f in faces:
f.uv= [uv+tra for uv in f.uv]
def edgeFaceUserCount(me, faces= None):
'''
Return an edge aligned list with the count for all the faces that use that edge. -
can spesify a subset of the faces, so only those will be counted.
'''
if faces==None:
faces= me.faces
max_vert= len(me.verts)
else:
# find the lighest vert index
pass
edge_users= [0] * len(me.edges)
edges_idx_dict= dict([(sorted_edge_indicies(ed), ed.index) for ed in me.edges])
for f in faces:
fvi= [v.index for v in f.v]# face vert idx's
for i in xrange(len(f)):
i1= fvi[i]
i2= fvi[i-1]
if i1>i2:
i1,i2= i2,i1
edge_users[edges_idx_dict[i1,i2]] += 1
return edge_users
#============================================================================#
# Takes a face, and a pixel x/y on the image and returns a worldspace x/y/z #
# will return none if the pixel is not inside the faces UV #
#============================================================================#
def getUvPixelLoc(face, pxLoc, img_size = None, uvArea = None):
TriangleArea= Blender.Mathutils.TriangleArea
Vector= Blender.Mathutils.Vector
if not img_size:
w,h = face.image.size
else:
w,h= img_size
scaled_uvs= [Vector(uv.x*w, uv.y*h) for uv in f.uv]
if len(scaled_uvs)==3:
indicies= ((0,1,2),)
else:
indicies= ((0,1,2), (0,2,3))
for fidxs in indicies:
for i1,i2,i3 in fidxs:
# IS a point inside our triangle?
# UVArea could be cached?
uv_area = TriangleArea(scaled_uvs[i1], scaled_uvs[i2], scaled_uvs[i3])
area0 = TriangleArea(pxLoc, scaled_uvs[i2], scaled_uvs[i3])
area1 = TriangleArea(pxLoc, scaled_uvs[i1], scaled_uvs[i3])
area2 = TriangleArea(pxLoc, scaled_uvs[i1], scaled_uvs[i2])
if area0 + area1 + area2 > uv_area + 1: # 1 px bleed/error margin.
pass # if were a quad the other side may contain the pixel so keep looking.
else:
# We know the point is in the tri
area0 /= uv_area
area1 /= uv_area
area2 /= uv_area
# New location
return Vector(\
face.v[i1].co[0]*area0 + face.v[i2].co[0]*area1 + face.v[i3].co[0]*area2,\
face.v[i1].co[1]*area0 + face.v[i2].co[1]*area1 + face.v[i3].co[1]*area2,\
face.v[i1].co[2]*area0 + face.v[i2].co[2]*area1 + face.v[i3].co[2]*area2\
)
return None
type_tuple= type( (0,) )
type_list= type( [] )
# Used for debugging ngon
"""
def draw_loops(loops):
me= Blender.Mesh.New()
for l in loops:
#~ me= Blender.Mesh.New()
i= len(me.verts)
me.verts.extend([v[0] for v in l])
try:
me.verts[0].sel= 1
except:
pass
me.edges.extend([ (j-1, j) for j in xrange(i+1, len(me.verts)) ])
# Close the edge?
me.edges.extend((i, len(me.verts)-1))
#~ ob= Blender.Object.New('Mesh')
#~ ob.link(me)
#~ scn= Blender.Scene.GetCurrent()
#~ scn.link(ob)
#~ ob.Layers= scn.Layers
#~ ob.sel= 1
# Fill
#fill= Blender.Mathutils.PolyFill(loops)
#me.faces.extend(fill)
ob= Blender.Object.New('Mesh')
ob.link(me)
scn= Blender.Scene.GetCurrent()
scn.link(ob)
ob.Layers= scn.Layers
ob.sel= 1
Blender.Window.RedrawAll()
"""
def ngon(from_data, indices, PREF_FIX_LOOPS= True):
'''
Takes a polyline of indices (fgon)
and returns a list of face indicie lists.
Designed to be used for importers that need indices for an fgon to create from existing verts.
from_data: either a mesh, or a list/tuple of vectors.
indices: a list of indicies to use this list is the ordered closed polyline to fill, and can be a subset of the data given.
PREF_FIX_LOOPS: If this is enabled polylines that use loops to make multiple polylines are delt with correctly.
'''
if not set: # Need sets for this, otherwise do a normal fill.
PREF_FIX_LOOPS= False
Vector= Blender.Mathutils.Vector
if not indices:
return []
# return []
def rvec(co): return round(co.x, 6), round(co.y, 6), round(co.z, 6)
def mlen(co): return abs(co[0])+abs(co[1])+abs(co[2]) # manhatten length of a vector, faster then length
def vert_treplet(v, i):
return v, rvec(v), i, mlen(v)
def ed_key_mlen(v1, v2):
if v1[3] > v2[3]:
return v2[1], v1[1]
else:
return v1[1], v2[1]
if not PREF_FIX_LOOPS:
'''
Normal single concave loop filling
'''
if type(from_data) in (type_tuple, type_list):
verts= [Vector(from_data[i]) for ii, i in enumerate(indices)]
else:
verts= [from_data.verts[i].co for ii, i in enumerate(indices)]
for i in xrange(len(verts)-1, 0, -1): # same as reversed(xrange(1, len(verts))):
if verts[i][1]==verts[i-1][0]:
verts.pop(i-1)
fill= Blender.Geometry.PolyFill([verts])
else:
'''
Seperate this loop into multiple loops be finding edges that are used twice
This is used by lightwave LWO files a lot
'''
if type(from_data) in (type_tuple, type_list):
verts= [vert_treplet(Vector(from_data[i]), ii) for ii, i in enumerate(indices)]
else:
verts= [vert_treplet(from_data.verts[i].co, ii) for ii, i in enumerate(indices)]
edges= [(i, i-1) for i in xrange(len(verts))]
if edges:
edges[0]= (0,len(verts)-1)
if not verts:
return []
edges_used= set()
edges_doubles= set()
# We need to check if any edges are used twice location based.
for ed in edges:
edkey= ed_key_mlen(verts[ed[0]], verts[ed[1]])
if edkey in edges_used:
edges_doubles.add(edkey)
else:
edges_used.add(edkey)
# Store a list of unconnected loop segments split by double edges.
# will join later
loop_segments= []
v_prev= verts[0]
context_loop= [v_prev]
loop_segments= [context_loop]
for v in verts:
if v!=v_prev:
# Are we crossing an edge we removed?
if ed_key_mlen(v, v_prev) in edges_doubles:
context_loop= [v]
loop_segments.append(context_loop)
else:
if context_loop and context_loop[-1][1]==v[1]:
#raise "as"
pass
else:
context_loop.append(v)
v_prev= v
# Now join loop segments
def join_seg(s1,s2):
if s2[-1][1]==s1[0][1]: #
s1,s2= s2,s1
elif s1[-1][1]==s2[0][1]:
pass
else:
return False
# If were stuill here s1 and s2 are 2 segments in the same polyline
s1.pop() # remove the last vert from s1
s1.extend(s2) # add segment 2 to segment 1
if s1[0][1]==s1[-1][1]: # remove endpoints double
s1.pop()
s2[:]= [] # Empty this segment s2 so we dont use it again.
return True
joining_segments= True
while joining_segments:
joining_segments= False
segcount= len(loop_segments)
for j in xrange(segcount-1, -1, -1): #reversed(xrange(segcount)):
seg_j= loop_segments[j]
if seg_j:
for k in xrange(j-1, -1, -1): # reversed(xrange(j)):
if not seg_j:
break
seg_k= loop_segments[k]
if seg_k and join_seg(seg_j, seg_k):
joining_segments= True
loop_list= loop_segments
for verts in loop_list:
while verts and verts[0][1]==verts[-1][1]:
verts.pop()
loop_list= [verts for verts in loop_list if len(verts)>2]
# DONE DEALING WITH LOOP FIXING
# vert mapping
vert_map= [None]*len(indices)
ii=0
for verts in loop_list:
if len(verts)>2:
for i, vert in enumerate(verts):
vert_map[i+ii]= vert[2]
ii+=len(verts)
fill= Blender.Geometry.PolyFill([ [v[0] for v in loop] for loop in loop_list ])
#draw_loops(loop_list)
#raise 'done loop'
# map to original indicies
fill= [[vert_map[i] for i in reversed(f)] for f in fill]
if not fill:
print 'Warning Cannot scanfill, fallback on a triangle fan.'
fill= [ [0, i-1, i] for i in xrange(2, len(indices)) ]
else:
# Use real scanfill.
# See if its flipped the wrong way.
flip= None
for fi in fill:
if flip != None:
break
for i, vi in enumerate(fi):
if vi==0 and fi[i-1]==1:
flip= False
break
elif vi==1 and fi[i-1]==0:
flip= True
break
if not flip:
for i, fi in enumerate(fill):
fill[i]= tuple([ii for ii in reversed(fi)])
return fill
# EG
'''
scn= Scene.GetCurrent()
me = scn.getActiveObject().getData(mesh=1)
ind= [v.index for v in me.verts if v.sel] # Get indices
indices = ngon(me, ind) # fill the ngon.
# Extand the faces to show what the scanfill looked like.
print len(indices)
me.faces.extend([[me.verts[ii] for ii in i] for i in indices])
'''
def meshCalcNormals(me, vertNormals=None):
'''
takes a mesh and returns very high quality normals 1 normal per vertex.
The normals should be correct, indipendant of topology
vertNormals - a list of vectors at least as long as the number of verts in the mesh
'''
Ang= Blender.Mathutils.AngleBetweenVecs
Vector= Blender.Mathutils.Vector
SMALL_NUM=0.000001
# Weight the edge normals by total angle difference
# EDGE METHOD
if not vertNormals:
vertNormals= [ Vector() for v in xrange(len(me.verts)) ]
else:
for v in vertNormals:
v.zero()
edges={}
for f in me.faces:
for i in xrange(len(f)):
i1, i2= f.v[i].index, f.v[i-1].index
if i1<i2:
i1,i2= i2,i1
try:
edges[i1, i2].append(f.no)
except:
edges[i1, i2]= [f.no]
# Weight the edge normals by total angle difference
for fnos in edges.itervalues():
len_fnos= len(fnos)
if len_fnos>1:
totAngDiff=0
for j in xrange(len_fnos-1, -1, -1): # same as reversed(xrange(...))
for k in xrange(j-1, -1, -1): # same as reversed(xrange(...))
#print j,k
try:
totAngDiff+= (Ang(fnos[j], fnos[k])) # /180 isnt needed, just to keeop the vert small.
except:
pass # Zero length face
# print totAngDiff
if totAngDiff > SMALL_NUM:
'''
average_no= Vector()
for no in fnos:
average_no+=no
'''
average_no= reduce(lambda a,b: a+b, fnos, Vector())
fnos.append(average_no*totAngDiff) # average no * total angle diff
#else:
# fnos[0]
else:
fnos.append(fnos[0])
for ed, v in edges.iteritems():
vertNormals[ed[0]]+= v[-1]
vertNormals[ed[1]]+= v[-1]
for i, v in enumerate(me.verts):
v.no= vertNormals[i]
def pointInsideMesh(ob, pt):
Intersect = Blender.Mathutils.Intersect # 2 less dict lookups.
Vector = Blender.Mathutils.Vector
def ptInFaceXYBounds(f, pt):
co= f.v[0].co
xmax= xmin= co.x
ymax= ymin= co.y
co= f.v[1].co
xmax= max(xmax, co.x)
xmin= min(xmin, co.x)
ymax= max(ymax, co.y)
ymin= min(ymin, co.y)
co= f.v[2].co
xmax= max(xmax, co.x)
xmin= min(xmin, co.x)
ymax= max(ymax, co.y)
ymin= min(ymin, co.y)
if len(f)==4:
co= f.v[3].co
xmax= max(xmax, co.x)
xmin= min(xmin, co.x)
ymax= max(ymax, co.y)
ymin= min(ymin, co.y)
# Now we have the bounds, see if the point is in it.
if\
pt.x < xmin or\
pt.y < ymin or\
pt.x > xmax or\
pt.y > ymax:
return False # point is outside face bounds
else:
return True # point inside.
#return xmax, ymax, xmin, ymin
def faceIntersect(f):
isect = Intersect(f.v[0].co, f.v[1].co, f.v[2].co, ray, obSpacePt, 1) # Clipped.
if not isect and len(f) == 4:
isect = Intersect(f.v[0].co, f.v[2].co, f.v[3].co, ray, obSpacePt, 1) # Clipped.
if isect and isect.z > obSpacePt.z: # This is so the ray only counts if its above the point.
return True
else:
return False
obImvMat = Blender.Mathutils.Matrix(ob.matrixWorld)
obImvMat.invert()
pt.resize4D()
obSpacePt = pt* obImvMat
pt.resize3D()
obSpacePt.resize3D()
ray = Vector(0,0,-1)
me= ob.getData(mesh=1)
# Here we find the number on intersecting faces, return true if an odd number (inside), false (outside) if its true.
return len([None for f in me.faces if ptInFaceXYBounds(f, obSpacePt) if faceIntersect(f)]) % 2
# NMesh wrapper
Vector= Blender.Mathutils.Vector
class NMesh(object):
__slots__= 'verts', 'faces', 'edges', 'faceUV', 'materials', 'realmesh'
def __init__(self, mesh):
'''
This is an NMesh wrapper that
mesh is an Mesh as returned by Blender.Mesh.New()
This class wraps NMesh like access into Mesh
Running NMesh.update() - with this wrapper,
Will update the realmesh.
'''
self.verts= []
self.faces= []
self.edges= []
self.faceUV= False
self.materials= []
self.realmesh= mesh
def addFace(self, nmf):
self.faces.append(nmf)
def Face(self, v=[]):
return NMFace(v)
def Vert(self, x,y,z):
return NMVert(x,y,z)
def hasFaceUV(self, flag):
if flag:
self.faceUV= True
else:
self.faceUV= False
def addMaterial(self, mat):
self.materials.append(mat)
def update(self, recalc_normals=False): # recalc_normals is dummy
mesh= self.realmesh
mesh.verts= None # Clears the
# Add in any verts from faces we may have not added.
for nmf in self.faces:
for nmv in nmf.v:
if nmv.index==-1:
nmv.index= len(self.verts)
self.verts.append(nmv)
mesh.verts.extend([nmv.co for nmv in self.verts])
for i, nmv in enumerate(self.verts):
nmv.index= i
mv= mesh.verts[i]
mv.sel= nmv.sel
good_faces= [nmf for nmf in self.faces if len(nmf.v) in (3,4)]
#print len(good_faces), 'AAA'
#mesh.faces.extend([nmf.v for nmf in self.faces])
mesh.faces.extend([[mesh.verts[nmv.index] for nmv in nmf.v] for nmf in good_faces])
if len(mesh.faces):
if self.faceUV:
mesh.faceUV= 1
#for i, nmf in enumerate(self.faces):
for i, nmf in enumerate(good_faces):
mf= mesh.faces[i]
if self.faceUV:
if len(nmf.uv) == len(mf.v):
mf.uv= [Vector(uv[0], uv[1]) for uv in nmf.uv]
if len(nmf.col) == len(mf.v):
for c, i in enumerate(mf.col):
c.r, c.g, c.b= nmf.col[i].r, nmf.col[i].g, nmf.col[i].b
if nmf.image:
mf.image= nmf.image
mesh.materials= self.materials[:16]
class NMVert(object):
__slots__= 'co', 'index', 'no', 'sel', 'uvco'
def __init__(self, x,y,z):
self.co= Vector(x,y,z)
self.index= None # set on appending.
self.no= Vector(0,0,1) # dummy
self.sel= 0
self.uvco= None
class NMFace(object):
__slots__= 'col', 'flag', 'hide', 'image', 'mat', 'materialIndex', 'mode', 'normal',\
'sel', 'smooth', 'transp', 'uv', 'v'
def __init__(self, v=[]):
self.col= []
self.flag= 0
self.hide= 0
self.image= None
self.mat= 0 # materialIndex needs support too.
self.mode= 0
self.normal= Vector(0,0,1)
self.uv= []
self.sel= 0
self.smooth= 0
self.transp= 0
self.uv= []
self.v= [] # a list of nmverts.
class NMCol(object):
__slots__ = 'r', 'g', 'b', 'a'
def __init__(self):
self.r= 255
self.g= 255
self.b= 255
self.a= 255
'''
#
verts_split= [dict() for i in xrange(len(me.verts))]
tot_verts= 0
for f in me.faces:
f_uv= f.uv
for i, v in enumerate(f.v):
vert_index= v.index # mesh index
vert_dict= verts_split[vert_index] # get the dict for this vert
uv= f_uv[i]
# now we have the vert and the face uv well make a unique dict.
vert_key= v.x, v.y, v.x, uv.x, uv.y # ADD IMAGE NAME HETR IF YOU WANT TO SPLIT BY THAT TOO
value= vert_index, tot_verts # ADD WEIGHT HERE IF YOU NEED.
try:
vert_dict[vert_key] # if this is missing it will fail.
except:
# this stores a mapping between the split and orig vert indicies
vert_dict[vert_key]= value
tot_verts+= 1
# a flat list of split verts - can add custom weight data here too if you need
split_verts= [None]*tot_verts
for vert_split_dict in verts_split:
for key, value in vert_split_dict.iteritems():
local_index, split_index= value
split_verts[split_index]= key
# split_verts - Now you have a list of verts split by their UV.
'''