blender/intern/cycles/kernel/geom/geom_triangle.h
Sergey Sharybin f4df3ec05a Cycles: Move triangle intersection functions into own file
This way extending intersection routines with some pre-calculation step wouldn't
explode the single file size, hopefully keeping them all in a nice maintainable
state.
2014-12-25 02:50:48 +05:00

207 lines
7.5 KiB
C

/*
* Adapted from code Copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Triangle Primitive
*
* Basic triangle with 3 vertices is used to represent mesh surfaces. */
CCL_NAMESPACE_BEGIN
/* normal on triangle */
ccl_device_inline float3 triangle_normal(KernelGlobals *kg, ShaderData *sd)
{
/* load triangle vertices */
float4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
float3 v0 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.x)));
float3 v1 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.y)));
float3 v2 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.z)));
/* return normal */
if(sd->flag & SD_NEGATIVE_SCALE_APPLIED)
return normalize(cross(v2 - v0, v1 - v0));
else
return normalize(cross(v1 - v0, v2 - v0));
}
/* point and normal on triangle */
ccl_device_inline void triangle_point_normal(KernelGlobals *kg, int object, int prim, float u, float v, float3 *P, float3 *Ng, int *shader)
{
/* load triangle vertices */
float4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
float3 v0 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.x)));
float3 v1 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.y)));
float3 v2 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.z)));
/* compute point */
float t = 1.0f - u - v;
*P = (u*v0 + v*v1 + t*v2);
/* get object flags, instance-aware */
int object_flag = kernel_tex_fetch(__object_flag, object >= 0 ? object : ~object);
/* compute normal */
if(object_flag & SD_NEGATIVE_SCALE_APPLIED)
*Ng = normalize(cross(v2 - v0, v1 - v0));
else
*Ng = normalize(cross(v1 - v0, v2 - v0));
/* shader`*/
*shader = kernel_tex_fetch(__tri_shader, prim);
}
/* Triangle vertex locations */
ccl_device_inline void triangle_vertices(KernelGlobals *kg, int prim, float3 P[3])
{
float4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
P[0] = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.x)));
P[1] = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.y)));
P[2] = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.z)));
}
/* Interpolate smooth vertex normal from vertices */
ccl_device_inline float3 triangle_smooth_normal(KernelGlobals *kg, int prim, float u, float v)
{
/* load triangle vertices */
float4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
float3 n0 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.x)));
float3 n1 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.y)));
float3 n2 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, __float_as_int(tri_vindex.z)));
return normalize((1.0f - u - v)*n2 + u*n0 + v*n1);
}
/* Ray differentials on triangle */
ccl_device_inline void triangle_dPdudv(KernelGlobals *kg, int prim, float3 *dPdu, float3 *dPdv)
{
/* fetch triangle vertex coordinates */
float4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
float3 p0 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.x)));
float3 p1 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.y)));
float3 p2 = float4_to_float3(kernel_tex_fetch(__tri_verts, __float_as_int(tri_vindex.z)));
/* compute derivatives of P w.r.t. uv */
*dPdu = (p0 - p2);
*dPdv = (p1 - p2);
}
/* Reading attributes on various triangle elements */
ccl_device float triangle_attribute_float(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float *dx, float *dy)
{
if(elem == ATTR_ELEMENT_FACE) {
if(dx) *dx = 0.0f;
if(dy) *dy = 0.0f;
return kernel_tex_fetch(__attributes_float, offset + sd->prim);
}
else if(elem == ATTR_ELEMENT_VERTEX || elem == ATTR_ELEMENT_VERTEX_MOTION) {
float4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
float f0 = kernel_tex_fetch(__attributes_float, offset + __float_as_int(tri_vindex.x));
float f1 = kernel_tex_fetch(__attributes_float, offset + __float_as_int(tri_vindex.y));
float f2 = kernel_tex_fetch(__attributes_float, offset + __float_as_int(tri_vindex.z));
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else if(elem == ATTR_ELEMENT_CORNER) {
int tri = offset + sd->prim*3;
float f0 = kernel_tex_fetch(__attributes_float, tri + 0);
float f1 = kernel_tex_fetch(__attributes_float, tri + 1);
float f2 = kernel_tex_fetch(__attributes_float, tri + 2);
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else {
if(dx) *dx = 0.0f;
if(dy) *dy = 0.0f;
return 0.0f;
}
}
ccl_device float3 triangle_attribute_float3(KernelGlobals *kg, const ShaderData *sd, AttributeElement elem, int offset, float3 *dx, float3 *dy)
{
if(elem == ATTR_ELEMENT_FACE) {
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
return float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + sd->prim));
}
else if(elem == ATTR_ELEMENT_VERTEX || elem == ATTR_ELEMENT_VERTEX_MOTION) {
float4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.x)));
float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.y)));
float3 f2 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + __float_as_int(tri_vindex.z)));
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else if(elem == ATTR_ELEMENT_CORNER || elem == ATTR_ELEMENT_CORNER_BYTE) {
int tri = offset + sd->prim*3;
float3 f0, f1, f2;
if(elem == ATTR_ELEMENT_CORNER) {
f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 0));
f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 1));
f2 = float4_to_float3(kernel_tex_fetch(__attributes_float3, tri + 2));
}
else {
f0 = color_byte_to_float(kernel_tex_fetch(__attributes_uchar4, tri + 0));
f1 = color_byte_to_float(kernel_tex_fetch(__attributes_uchar4, tri + 1));
f2 = color_byte_to_float(kernel_tex_fetch(__attributes_uchar4, tri + 2));
}
#ifdef __RAY_DIFFERENTIALS__
if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else {
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
return make_float3(0.0f, 0.0f, 0.0f);
}
}
CCL_NAMESPACE_END