blender/source/gameengine/Expressions/VectorValue.cpp
Benoit Bolsee 386122ada6 BGE performance, 4th round: logic
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or 
full scan. The logic engine is now free of memory allocation, which is
an important stability factor. 

The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on 
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.

The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the 
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:

Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.

With the new system, the sequential execution of controllers is still 
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.

If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.

Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
2009-05-10 20:53:58 +00:00

218 lines
4.7 KiB
C++

// VectorValue.cpp: implementation of the CVectorValue class.
/*
* Copyright (c) 1996-2000 Erwin Coumans <coockie@acm.org>
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Erwin Coumans makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef WIN32
#pragma warning (disable:4786)
#endif
#include "Value.h"
#include "VectorValue.h"
#include "ErrorValue.h"
//#include "MatrixValue.h"
#include "VoidValue.h"
#include "StringValue.h"
//#include "FactoryManager.h"
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CVectorValue::CVectorValue(float x,float y,float z, AllocationTYPE alloctype)
{
SetCustomFlag1(false);//FancyOutput=false;
if (alloctype == STACKVALUE)
{
CValue::DisableRefCount();
};
m_vec[KX_X] = m_transformedvec[KX_X] = x;
m_vec[KX_Y] = m_transformedvec[KX_Y] = y;
m_vec[KX_Z] = m_transformedvec[KX_Z] = z;
}
CVectorValue::CVectorValue(double vec[],const char *name,AllocationTYPE alloctype) {
SetCustomFlag1(false);//FancyOutput=false;
m_vec[KX_X] = m_transformedvec[KX_X] = vec[KX_X];
m_vec[KX_Y] = m_transformedvec[KX_Y] = vec[KX_Y];
m_vec[KX_Z] = m_transformedvec[KX_Z] = vec[KX_Z];
if (alloctype == STACKVALUE)
{
CValue::DisableRefCount();
}
SetName(name);
}
CVectorValue::CVectorValue(double vec[],AllocationTYPE alloctype) {
SetCustomFlag1(false);//FancyOutput=false;
m_vec[KX_X] = m_transformedvec[KX_X] = vec[KX_X];
m_vec[KX_Y] = m_transformedvec[KX_Y] = vec[KX_Y];
m_vec[KX_Z] = m_transformedvec[KX_Z] = vec[KX_Z];
if (alloctype == STACKVALUE)
{
CValue::DisableRefCount();
}
}
CVectorValue::~CVectorValue()
{
}
CValue* CVectorValue::CalcFinal(VALUE_DATA_TYPE dtype, VALUE_OPERATOR op, CValue *val)
/*
pre: the type of val is dtype
ret: a new object containing the result of applying operator op to val and
this object
*/
{
CValue *ret = NULL;
switch(op)
{
case VALUE_ADD_OPERATOR:
{
switch (dtype)
{
case VALUE_EMPTY_TYPE:
case VALUE_VECTOR_TYPE:
{
ret = new CVectorValue(
val->GetVector3()[KX_X] + GetVector3()[KX_X],
val->GetVector3()[KX_Y] + GetVector3()[KX_Y],
val->GetVector3()[KX_Z] + GetVector3()[KX_Z],
CValue::HEAPVALUE);
ret->SetName(GetName());
break;
}
default:
ret = new CErrorValue(val->GetText() + op2str(op) + GetText());
}
break;
}
case VALUE_MUL_OPERATOR:
{
switch (dtype)
{
case VALUE_EMPTY_TYPE:
case VALUE_VECTOR_TYPE:
{
//MT_Vector3 supports 'scaling' by another vector, instead of using general transform, Gino?
//ret = new CVectorValue(val->GetVector3().Scaled(GetVector3()),GetName());
break;
}
case VALUE_FLOAT_TYPE:
{
ret = new CVectorValue(
val->GetVector3()[KX_X] * GetVector3()[KX_X],
val->GetVector3()[KX_Y] * GetVector3()[KX_Y],
val->GetVector3()[KX_Z] * GetVector3()[KX_Z],
CValue::HEAPVALUE);
ret->SetName(GetName());
break;
}
default:
ret = new CErrorValue(val->GetText() + op2str(op) + GetText());
}
break;
}
default:
ret = new CErrorValue(val->GetText() + op2str(op) + GetText());
}
return ret;
}
double CVectorValue::GetNumber()
{
return m_vec[KX_X];
}
double* CVectorValue::GetVector3(bool bGetTransformedVec)
{
if (bGetTransformedVec)
return m_transformedvec;
// else
return m_vec;
}
void CVectorValue::SetVector(double newvec[])
{
m_vec[KX_X] = m_transformedvec[KX_X] = newvec[KX_X];
m_vec[KX_Y] = m_transformedvec[KX_Y] = newvec[KX_Y];
m_vec[KX_Z] = m_transformedvec[KX_Z] = newvec[KX_Z];
SetModified(true);
}
void CVectorValue::SetValue(CValue *newval)
{
double* newvec = ((CVectorValue*)newval)->GetVector3();
m_vec[KX_X] = m_transformedvec[KX_X] = newvec[KX_X];
m_vec[KX_Y] = m_transformedvec[KX_Y] = newvec[KX_Y];
m_vec[KX_Z] = m_transformedvec[KX_Z] = newvec[KX_Z];
SetModified(true);
}
static const STR_String gstrVectorStr=STR_String();
const STR_String & CVectorValue::GetText()
{
assertd(false);
return gstrVectorStr;
}
CValue* CVectorValue::GetReplica() {
CVectorValue* replica = new CVectorValue(*this);
replica->ProcessReplica();
return replica;
};
/*void CVectorValue::Transform(rcMatrix4x4 mat)
{
m_transformedvec = mat*m_vec;
}
*/