blender/source/gameengine/Ketsji/KX_GameObject.cpp
Brecht Van Lommel cb89decfdc Merge of first part of changes from the apricot branch, especially
the features that are needed to run the game. Compile tested with
scons, make, but not cmake, that seems to have an issue not related
to these changes. The changes include:

* GLSL support in the viewport and game engine, enable in the game
  menu in textured draw mode.
* Synced and merged part of the duplicated blender and gameengine/
  gameplayer drawing code.
* Further refactoring of game engine drawing code, especially mesh
  storage changed a lot.
* Optimizations in game engine armatures to avoid recomputations.
* A python function to get the framerate estimate in game.

* An option take object color into account in materials.
* An option to restrict shadow casters to a lamp's layers.
* Increase from 10 to 18 texture slots for materials, lamps, word.
  An extra texture slot shows up once the last slot is used.

* Memory limit for undo, not enabled by default yet because it
  needs the .B.blend to be changed.
* Multiple undo for image painting.

* An offset for dupligroups, so not all objects in a group have to
  be at the origin.
2008-09-04 20:51:28 +00:00

1918 lines
46 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Game object wrapper
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined(_WIN64)
typedef unsigned __int64 uint_ptr;
#else
typedef unsigned long uint_ptr;
#endif
#ifdef WIN32
// This warning tells us about truncation of __long__ stl-generated names.
// It can occasionally cause DevStudio to have internal compiler warnings.
#pragma warning( disable : 4786 )
#endif
#define KX_INERTIA_INFINITE 10000
#include "RAS_IPolygonMaterial.h"
#include "KX_BlenderMaterial.h"
#include "KX_GameObject.h"
#include "RAS_MeshObject.h"
#include "KX_MeshProxy.h"
#include "KX_PolyProxy.h"
#include <stdio.h> // printf
#include "SG_Controller.h"
#include "KX_IPhysicsController.h"
#include "SG_Node.h"
#include "SG_Controller.h"
#include "KX_ClientObjectInfo.h"
#include "RAS_BucketManager.h"
#include "KX_RayCast.h"
#include "KX_PythonInit.h"
#include "KX_PyMath.h"
#include "SCA_IActuator.h"
#include "SCA_ISensor.h"
// This file defines relationships between parents and children
// in the game engine.
#include "KX_SG_NodeRelationships.h"
KX_GameObject::KX_GameObject(
void* sgReplicationInfo,
SG_Callbacks callbacks,
PyTypeObject* T
) :
SCA_IObject(T),
m_bDyna(false),
m_layer(0),
m_pBlenderObject(NULL),
m_pBlenderGroupObject(NULL),
m_bSuspendDynamics(false),
m_bUseObjectColor(false),
m_bIsNegativeScaling(false),
m_bVisible(true),
m_bCulled(true),
m_pPhysicsController1(NULL),
m_pPhysicsEnvironment(NULL),
m_xray(false),
m_pHitObject(NULL),
m_isDeformable(false)
{
m_ignore_activity_culling = false;
m_pClient_info = new KX_ClientObjectInfo(this, KX_ClientObjectInfo::ACTOR);
m_pSGNode = new SG_Node(this,sgReplicationInfo,callbacks);
// define the relationship between this node and it's parent.
KX_NormalParentRelation * parent_relation =
KX_NormalParentRelation::New();
m_pSGNode->SetParentRelation(parent_relation);
};
KX_GameObject::~KX_GameObject()
{
RemoveMeshes();
// is this delete somewhere ?
//if (m_sumoObj)
// delete m_sumoObj;
delete m_pClient_info;
//if (m_pSGNode)
// delete m_pSGNode;
if (m_pSGNode)
{
// must go through controllers and make sure they will not use us anymore
// This is important for KX_BulletPhysicsControllers that unregister themselves
// from the object when they are deleted.
SGControllerList::iterator contit;
SGControllerList& controllers = m_pSGNode->GetSGControllerList();
for (contit = controllers.begin();contit!=controllers.end();++contit)
{
(*contit)->ClearObject();
}
m_pSGNode->SetSGClientObject(NULL);
}
}
CValue* KX_GameObject:: Calc(VALUE_OPERATOR op, CValue *val)
{
return NULL;
}
CValue* KX_GameObject::CalcFinal(VALUE_DATA_TYPE dtype, VALUE_OPERATOR op, CValue *val)
{
return NULL;
}
const STR_String & KX_GameObject::GetText()
{
return m_text;
}
float KX_GameObject::GetNumber()
{
return 0;
}
STR_String KX_GameObject::GetName()
{
return m_name;
}
void KX_GameObject::SetName(STR_String name)
{
m_name = name;
}; // Set the name of the value
void KX_GameObject::ReplicaSetName(STR_String name)
{
}
KX_IPhysicsController* KX_GameObject::GetPhysicsController()
{
return m_pPhysicsController1;
}
KX_GameObject* KX_GameObject::GetParent()
{
KX_GameObject* result = NULL;
SG_Node* node = m_pSGNode;
while (node && !result)
{
node = node->GetSGParent();
if (node)
result = (KX_GameObject*)node->GetSGClientObject();
}
if (result)
result->AddRef();
return result;
}
void KX_GameObject::SetParent(KX_Scene *scene, KX_GameObject* obj)
{
if (obj && GetSGNode()->GetSGParent() != obj->GetSGNode())
{
// Make sure the objects have some scale
MT_Vector3 scale1 = NodeGetWorldScaling();
MT_Vector3 scale2 = obj->NodeGetWorldScaling();
if (fabs(scale2[0]) < FLT_EPSILON ||
fabs(scale2[1]) < FLT_EPSILON ||
fabs(scale2[2]) < FLT_EPSILON ||
fabs(scale1[0]) < FLT_EPSILON ||
fabs(scale1[1]) < FLT_EPSILON ||
fabs(scale1[2]) < FLT_EPSILON) { return; }
// Remove us from our old parent and set our new parent
RemoveParent(scene);
obj->GetSGNode()->AddChild(GetSGNode());
if (m_pPhysicsController1)
{
m_pPhysicsController1->SuspendDynamics(true);
}
// Set us to our new scale, position, and orientation
scale1[0] = scale1[0]/scale2[0];
scale1[1] = scale1[1]/scale2[1];
scale1[2] = scale1[2]/scale2[2];
MT_Matrix3x3 invori = obj->NodeGetWorldOrientation().inverse();
MT_Vector3 newpos = invori*(NodeGetWorldPosition()-obj->NodeGetWorldPosition())*scale1;
NodeSetLocalScale(scale1);
NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2]));
NodeSetLocalOrientation(invori*NodeGetWorldOrientation());
NodeUpdateGS(0.f,true);
// object will now be a child, it must be removed from the parent list
CListValue* rootlist = scene->GetRootParentList();
if (rootlist->RemoveValue(this))
// the object was in parent list, decrement ref count as it's now removed
Release();
}
}
void KX_GameObject::RemoveParent(KX_Scene *scene)
{
if (GetSGNode()->GetSGParent())
{
// Set us to the right spot
GetSGNode()->SetLocalScale(GetSGNode()->GetWorldScaling());
GetSGNode()->SetLocalOrientation(GetSGNode()->GetWorldOrientation());
GetSGNode()->SetLocalPosition(GetSGNode()->GetWorldPosition());
// Remove us from our parent
GetSGNode()->DisconnectFromParent();
NodeUpdateGS(0.f,true);
// the object is now a root object, add it to the parentlist
CListValue* rootlist = scene->GetRootParentList();
if (!rootlist->SearchValue(this))
// object was not in root list, add it now and increment ref count
rootlist->Add(AddRef());
if (m_pPhysicsController1)
{
m_pPhysicsController1->RestoreDynamics();
}
}
}
void KX_GameObject::ProcessReplica(KX_GameObject* replica)
{
replica->m_pPhysicsController1 = NULL;
replica->m_pSGNode = NULL;
replica->m_pClient_info = new KX_ClientObjectInfo(*m_pClient_info);
replica->m_pClient_info->m_gameobject = replica;
replica->m_state = 0;
}
CValue* KX_GameObject::GetReplica()
{
KX_GameObject* replica = new KX_GameObject(*this);
// this will copy properties and so on...
CValue::AddDataToReplica(replica);
ProcessReplica(replica);
return replica;
}
void KX_GameObject::ApplyForce(const MT_Vector3& force,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->ApplyForce(force,local);
}
void KX_GameObject::ApplyTorque(const MT_Vector3& torque,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->ApplyTorque(torque,local);
}
void KX_GameObject::ApplyMovement(const MT_Vector3& dloc,bool local)
{
if (m_pPhysicsController1) // (IsDynamic())
{
m_pPhysicsController1->RelativeTranslate(dloc,local);
}
GetSGNode()->RelativeTranslate(dloc,GetSGNode()->GetSGParent(),local);
}
void KX_GameObject::ApplyRotation(const MT_Vector3& drot,bool local)
{
MT_Matrix3x3 rotmat(drot);
GetSGNode()->RelativeRotate(rotmat,local);
if (m_pPhysicsController1) { // (IsDynamic())
m_pPhysicsController1->RelativeRotate(rotmat,local);
}
}
/**
GetOpenGL Matrix, returns an OpenGL 'compatible' matrix
*/
double* KX_GameObject::GetOpenGLMatrix()
{
// todo: optimize and only update if necessary
double* fl = m_OpenGL_4x4Matrix.getPointer();
MT_Transform trans;
trans.setOrigin(GetSGNode()->GetWorldPosition());
trans.setBasis(GetSGNode()->GetWorldOrientation());
MT_Vector3 scaling = GetSGNode()->GetWorldScaling();
m_bIsNegativeScaling = ((scaling[0] < 0.0) ^ (scaling[1] < 0.0) ^ (scaling[2] < 0.0)) ? true : false;
trans.scale(scaling[0], scaling[1], scaling[2]);
trans.getValue(fl);
return fl;
}
void KX_GameObject::AddMeshUser()
{
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->AddMeshUser(this);
UpdateBuckets();
}
void KX_GameObject::UpdateBuckets()
{
double* fl = GetOpenGLMatrix();
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->UpdateBuckets(this, fl, m_bUseObjectColor, m_objectColor, m_bVisible, m_bCulled);
}
void KX_GameObject::RemoveMeshes()
{
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->RemoveFromBuckets(this);
//note: meshes can be shared, and are deleted by KX_BlenderSceneConverter
m_meshes.clear();
}
void KX_GameObject::UpdateNonDynas()
{
if (m_pPhysicsController1)
{
m_pPhysicsController1->SetSumoTransform(true);
}
}
void KX_GameObject::UpdateTransform()
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetSumoTransform(false);
}
void KX_GameObject::UpdateTransformFunc(SG_IObject* node, void* gameobj, void* scene)
{
((KX_GameObject*)gameobj)->UpdateTransform();
}
void KX_GameObject::SetDebugColor(unsigned int bgra)
{
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->DebugColor(bgra);
}
void KX_GameObject::ResetDebugColor()
{
SetDebugColor(0xff000000);
}
void KX_GameObject::InitIPO(bool ipo_as_force,
bool ipo_add,
bool ipo_local)
{
SGControllerList::iterator it = GetSGNode()->GetSGControllerList().begin();
while (it != GetSGNode()->GetSGControllerList().end()) {
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_RESET, true);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_AS_FORCE, ipo_as_force);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_ADD, ipo_add);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_LOCAL, ipo_local);
it++;
}
}
void KX_GameObject::UpdateIPO(float curframetime,
bool recurse)
{
// just the 'normal' update procedure.
GetSGNode()->SetSimulatedTime(curframetime,recurse);
GetSGNode()->UpdateWorldData(curframetime);
UpdateTransform();
}
// IPO update
void
KX_GameObject::UpdateMaterialData(
dword matname_hash,
MT_Vector4 rgba,
MT_Vector3 specrgb,
MT_Scalar hard,
MT_Scalar spec,
MT_Scalar ref,
MT_Scalar emit,
MT_Scalar alpha
)
{
int mesh = 0;
if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0) {
list<RAS_MeshMaterial>::iterator mit = m_meshes[mesh]->GetFirstMaterial();
for(; mit != m_meshes[mesh]->GetLastMaterial(); ++mit)
{
RAS_IPolyMaterial* poly = mit->m_bucket->GetPolyMaterial();
if(poly->GetFlag() & RAS_BLENDERMAT )
{
KX_BlenderMaterial *m = static_cast<KX_BlenderMaterial*>(poly);
if (matname_hash == NULL)
{
m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha);
// if mesh has only one material attached to it then use original hack with no need to edit vertices (better performance)
SetObjectColor(rgba);
}
else
{
if (matname_hash == poly->GetMaterialNameHash())
{
m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha);
m_meshes[mesh]->SetVertexColor(poly,rgba);
// no break here, because one blender material can be split into several game engine materials
// (e.g. one uvsphere material is split into one material at poles with ras_mode TRIANGLE and one material for the body
// if here was a break then would miss some vertices if material was split
}
}
}
}
}
}
bool
KX_GameObject::GetVisible(
void
)
{
return m_bVisible;
}
void
KX_GameObject::SetVisible(
bool v
)
{
m_bVisible = v;
}
bool
KX_GameObject::GetCulled(
void
)
{
return m_bCulled;
}
void
KX_GameObject::SetCulled(
bool c
)
{
m_bCulled = c;
}
void
KX_GameObject::SetLayer(
int l
)
{
m_layer = l;
}
int
KX_GameObject::GetLayer(
void
)
{
return m_layer;
}
void KX_GameObject::addLinearVelocity(const MT_Vector3& lin_vel,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetLinearVelocity(lin_vel + m_pPhysicsController1->GetLinearVelocity(),local);
}
void KX_GameObject::setLinearVelocity(const MT_Vector3& lin_vel,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetLinearVelocity(lin_vel,local);
}
void KX_GameObject::setAngularVelocity(const MT_Vector3& ang_vel,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetAngularVelocity(ang_vel,local);
}
void KX_GameObject::ResolveCombinedVelocities(
const MT_Vector3 & lin_vel,
const MT_Vector3 & ang_vel,
bool lin_vel_local,
bool ang_vel_local
){
if (m_pPhysicsController1)
{
MT_Vector3 lv = lin_vel_local ? NodeGetWorldOrientation() * lin_vel : lin_vel;
MT_Vector3 av = ang_vel_local ? NodeGetWorldOrientation() * ang_vel : ang_vel;
m_pPhysicsController1->resolveCombinedVelocities(
lv.x(),lv.y(),lv.z(),av.x(),av.y(),av.z());
}
}
void KX_GameObject::SetObjectColor(const MT_Vector4& rgbavec)
{
m_bUseObjectColor = true;
m_objectColor = rgbavec;
}
void KX_GameObject::AlignAxisToVect(const MT_Vector3& dir, int axis, float fac)
{
MT_Matrix3x3 orimat;
MT_Vector3 vect,ori,z,x,y;
MT_Scalar len;
vect = dir;
len = vect.length();
if (MT_fuzzyZero(len))
{
cout << "alignAxisToVect() Error: Null vector!\n";
return;
}
if (fac<=0.0) {
return;
}
// normalize
vect /= len;
orimat = GetSGNode()->GetWorldOrientation();
switch (axis)
{
case 0: //x axis
ori = MT_Vector3(orimat[0][2], orimat[1][2], orimat[2][2]); //pivot axis
if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON) //is the vector paralell to the pivot?
ori = MT_Vector3(orimat[0][1], orimat[1][1], orimat[2][1]); //change the pivot!
if (fac == 1.0) {
x = vect;
} else {
x = (vect * fac) + ((orimat * MT_Vector3(1.0, 0.0, 0.0)) * (1-fac));
len = x.length();
if (MT_fuzzyZero(len)) x = vect;
else x /= len;
}
y = ori.cross(x);
z = x.cross(y);
break;
case 1: //y axis
ori = MT_Vector3(orimat[0][0], orimat[1][0], orimat[2][0]);
if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON)
ori = MT_Vector3(orimat[0][2], orimat[1][2], orimat[2][2]);
if (fac == 1.0) {
y = vect;
} else {
y = (vect * fac) + ((orimat * MT_Vector3(0.0, 1.0, 0.0)) * (1-fac));
len = y.length();
if (MT_fuzzyZero(len)) y = vect;
else y /= len;
}
z = ori.cross(y);
x = y.cross(z);
break;
case 2: //z axis
ori = MT_Vector3(orimat[0][1], orimat[1][1], orimat[2][1]);
if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON)
ori = MT_Vector3(orimat[0][0], orimat[1][0], orimat[2][0]);
if (fac == 1.0) {
z = vect;
} else {
z = (vect * fac) + ((orimat * MT_Vector3(0.0, 0.0, 1.0)) * (1-fac));
len = z.length();
if (MT_fuzzyZero(len)) z = vect;
else z /= len;
}
x = ori.cross(z);
y = z.cross(x);
break;
default: //wrong input?
cout << "alignAxisToVect(): Wrong axis '" << axis <<"'\n";
return;
}
x.normalize(); //normalize the vectors
y.normalize();
z.normalize();
orimat = MT_Matrix3x3( x[0],y[0],z[0],
x[1],y[1],z[1],
x[2],y[2],z[2]);
if (GetSGNode()->GetSGParent() != NULL)
{
// the object is a child, adapt its local orientation so that
// the global orientation is aligned as we want.
MT_Matrix3x3 invori = GetSGNode()->GetSGParent()->GetWorldOrientation().inverse();
NodeSetLocalOrientation(invori*orimat);
}
else
NodeSetLocalOrientation(orimat);
}
MT_Scalar KX_GameObject::GetMass()
{
if (m_pPhysicsController1)
{
return m_pPhysicsController1->GetMass();
}
return 0.0;
}
MT_Vector3 KX_GameObject::GetLinearVelocity(bool local)
{
MT_Vector3 velocity(0.0,0.0,0.0), locvel;
MT_Matrix3x3 ori;
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetLinearVelocity();
if (local)
{
ori = GetSGNode()->GetWorldOrientation();
locvel = velocity * ori;
return locvel;
}
}
return velocity;
}
MT_Vector3 KX_GameObject::GetAngularVelocity(bool local)
{
MT_Vector3 velocity(0.0,0.0,0.0), locvel;
MT_Matrix3x3 ori;
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetAngularVelocity();
if (local)
{
ori = GetSGNode()->GetWorldOrientation();
locvel = velocity * ori;
return locvel;
}
}
return velocity;
}
// scenegraph node stuff
void KX_GameObject::NodeSetLocalPosition(const MT_Point3& trans)
{
if (m_pPhysicsController1 && (!GetSGNode() || !GetSGNode()->GetSGParent()))
{
// don't update physic controller if the object is a child:
// 1) the transformation will not be right
// 2) in this case, the physic controller is necessarily a static object
// that is updated from the normal kinematic synchronization
m_pPhysicsController1->setPosition(trans);
}
if (GetSGNode())
GetSGNode()->SetLocalPosition(trans);
}
void KX_GameObject::NodeSetLocalOrientation(const MT_Matrix3x3& rot)
{
if (m_pPhysicsController1 && (!GetSGNode() || !GetSGNode()->GetSGParent()))
{
// see note above
m_pPhysicsController1->setOrientation(rot);
}
if (GetSGNode())
GetSGNode()->SetLocalOrientation(rot);
}
void KX_GameObject::NodeSetLocalScale(const MT_Vector3& scale)
{
if (m_pPhysicsController1 && (!GetSGNode() || !GetSGNode()->GetSGParent()))
{
// see note above
m_pPhysicsController1->setScaling(scale);
}
if (GetSGNode())
GetSGNode()->SetLocalScale(scale);
}
void KX_GameObject::NodeSetRelativeScale(const MT_Vector3& scale)
{
if (GetSGNode())
GetSGNode()->RelativeScale(scale);
}
void KX_GameObject::NodeSetWorldPosition(const MT_Point3& trans)
{
SG_Node* parent = m_pSGNode->GetSGParent();
if (parent != NULL)
{
// Make sure the objects have some scale
MT_Vector3 scale = parent->GetWorldScaling();
if (fabs(scale[0]) < FLT_EPSILON ||
fabs(scale[1]) < FLT_EPSILON ||
fabs(scale[2]) < FLT_EPSILON)
{
return;
}
scale[0] = 1.0/scale[0];
scale[1] = 1.0/scale[1];
scale[2] = 1.0/scale[2];
MT_Matrix3x3 invori = parent->GetWorldOrientation().inverse();
MT_Vector3 newpos = invori*(trans-parent->GetWorldPosition())*scale;
NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2]));
}
else
{
NodeSetLocalPosition(trans);
}
}
void KX_GameObject::NodeUpdateGS(double time,bool bInitiator)
{
if (GetSGNode())
GetSGNode()->UpdateWorldData(time);
}
const MT_Matrix3x3& KX_GameObject::NodeGetWorldOrientation() const
{
return GetSGNode()->GetWorldOrientation();
}
const MT_Vector3& KX_GameObject::NodeGetWorldScaling() const
{
return GetSGNode()->GetWorldScaling();
}
const MT_Point3& KX_GameObject::NodeGetWorldPosition() const
{
return GetSGNode()->GetWorldPosition();
}
/* Suspend/ resume: for the dynamic behaviour, there is a simple
* method. For the residual motion, there is not. I wonder what the
* correct solution is for Sumo. Remove from the motion-update tree?
*
* So far, only switch the physics and logic.
* */
void KX_GameObject::Resume(void)
{
if (m_suspended) {
SCA_IObject::Resume();
GetPhysicsController()->RestoreDynamics();
m_suspended = false;
}
}
void KX_GameObject::Suspend()
{
if ((!m_ignore_activity_culling)
&& (!m_suspended)) {
SCA_IObject::Suspend();
GetPhysicsController()->SuspendDynamics();
m_suspended = true;
}
}
/* ------- python stuff ---------------------------------------------------*/
PyMethodDef KX_GameObject::Methods[] = {
{"getPosition", (PyCFunction) KX_GameObject::sPyGetPosition, METH_NOARGS},
{"setPosition", (PyCFunction) KX_GameObject::sPySetPosition, METH_O},
{"getLinearVelocity", (PyCFunction) KX_GameObject::sPyGetLinearVelocity, METH_VARARGS},
{"setLinearVelocity", (PyCFunction) KX_GameObject::sPySetLinearVelocity, METH_VARARGS},
{"getAngularVelocity", (PyCFunction) KX_GameObject::sPyGetAngularVelocity, METH_VARARGS},
{"setAngularVelocity", (PyCFunction) KX_GameObject::sPySetAngularVelocity, METH_VARARGS},
{"getVelocity", (PyCFunction) KX_GameObject::sPyGetVelocity, METH_VARARGS},
{"getMass", (PyCFunction) KX_GameObject::sPyGetMass, METH_NOARGS},
{"getReactionForce", (PyCFunction) KX_GameObject::sPyGetReactionForce, METH_NOARGS},
{"getOrientation", (PyCFunction) KX_GameObject::sPyGetOrientation, METH_NOARGS},
{"setOrientation", (PyCFunction) KX_GameObject::sPySetOrientation, METH_O},
{"getVisible",(PyCFunction) KX_GameObject::sPyGetVisible, METH_NOARGS},
{"setVisible",(PyCFunction) KX_GameObject::sPySetVisible, METH_O},
{"getState",(PyCFunction) KX_GameObject::sPyGetState, METH_NOARGS},
{"setState",(PyCFunction) KX_GameObject::sPySetState, METH_O},
{"alignAxisToVect",(PyCFunction) KX_GameObject::sPyAlignAxisToVect, METH_VARARGS},
{"getAxisVect",(PyCFunction) KX_GameObject::sPyGetAxisVect, METH_O},
{"suspendDynamics", (PyCFunction)KX_GameObject::sPySuspendDynamics,METH_NOARGS},
{"restoreDynamics", (PyCFunction)KX_GameObject::sPyRestoreDynamics,METH_NOARGS},
{"enableRigidBody", (PyCFunction)KX_GameObject::sPyEnableRigidBody,METH_NOARGS},
{"disableRigidBody", (PyCFunction)KX_GameObject::sPyDisableRigidBody,METH_NOARGS},
{"applyImpulse", (PyCFunction) KX_GameObject::sPyApplyImpulse, METH_VARARGS},
{"setCollisionMargin", (PyCFunction) KX_GameObject::sPySetCollisionMargin, METH_O},
{"getParent", (PyCFunction)KX_GameObject::sPyGetParent,METH_NOARGS},
{"setParent", (PyCFunction)KX_GameObject::sPySetParent,METH_O},
{"removeParent", (PyCFunction)KX_GameObject::sPyRemoveParent,METH_NOARGS},
{"getChildren", (PyCFunction)KX_GameObject::sPyGetChildren,METH_NOARGS},
{"getChildrenRecursive", (PyCFunction)KX_GameObject::sPyGetChildrenRecursive,METH_NOARGS},
{"getMesh", (PyCFunction)KX_GameObject::sPyGetMesh,METH_VARARGS},
{"getPhysicsId", (PyCFunction)KX_GameObject::sPyGetPhysicsId,METH_NOARGS},
{"getPropertyNames", (PyCFunction)KX_GameObject::sPyGetPropertyNames,METH_NOARGS},
{"endObject",(PyCFunction) KX_GameObject::sPyEndObject, METH_NOARGS},
KX_PYMETHODTABLE(KX_GameObject, rayCastTo),
KX_PYMETHODTABLE(KX_GameObject, rayCast),
KX_PYMETHODTABLE(KX_GameObject, getDistanceTo),
KX_PYMETHODTABLE(KX_GameObject, getVectTo),
{NULL,NULL} //Sentinel
};
/*
bool KX_GameObject::ConvertPythonVectorArgs(PyObject* args,
MT_Vector3& pos,
MT_Vector3& pos2)
{
PyObject* pylist;
PyObject* pylist2;
bool error = (PyArg_ParseTuple(args,"OO",&pylist,&pylist2)) != 0;
pos = ConvertPythonPylist(pylist);
pos2 = ConvertPythonPylist(pylist2);
return error;
}
*/
PyObject* KX_GameObject::PyEndObject(PyObject* self)
{
KX_Scene *scene = PHY_GetActiveScene();
scene->DelayedRemoveObject(this);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetPosition(PyObject* self)
{
return PyObjectFrom(NodeGetWorldPosition());
}
PyTypeObject KX_GameObject::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_GameObject",
sizeof(KX_GameObject),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject KX_GameObject::Parents[] = {
&KX_GameObject::Type,
&SCA_IObject::Type,
&CValue::Type,
NULL
};
PyObject* KX_GameObject::_getattr(const STR_String& attr)
{
if (m_pPhysicsController1)
{
if (attr == "mass")
return PyFloat_FromDouble(GetPhysicsController()->GetMass());
}
if (attr == "parent")
{
KX_GameObject* parent = GetParent();
if (parent)
{
parent->AddRef();
return parent;
}
Py_RETURN_NONE;
}
if (attr == "visible")
return PyInt_FromLong(m_bVisible);
if (attr == "position")
return PyObjectFrom(NodeGetWorldPosition());
if (attr == "orientation")
return PyObjectFrom(NodeGetWorldOrientation());
if (attr == "scaling")
return PyObjectFrom(NodeGetWorldScaling());
if (attr == "name")
return PyString_FromString(m_name.ReadPtr());
if (attr == "timeOffset") {
if (m_pSGNode->GetSGParent()->IsSlowParent()) {
return PyFloat_FromDouble(static_cast<KX_SlowParentRelation *>(m_pSGNode->GetSGParent()->GetParentRelation())->GetTimeOffset());
} else {
return PyFloat_FromDouble(0.0);
}
}
_getattr_up(SCA_IObject);
}
int KX_GameObject::_setattr(const STR_String& attr, PyObject *value) // _setattr method
{
if (attr == "mass") {
PyErr_SetString(PyExc_AttributeError, "attribute \"mass\" is read only");
return 1;
}
if (attr == "parent") {
PyErr_SetString(PyExc_AttributeError, "attribute \"mass\" is read only\nUse setParent()");
return 1;
}
if (PyInt_Check(value))
{
int val = PyInt_AsLong(value);
if (attr == "visible")
{
SetVisible(val != 0);
UpdateBuckets();
return 0;
}
}
if (PyFloat_Check(value))
{
MT_Scalar val = PyFloat_AsDouble(value);
if (attr == "timeOffset") {
if (m_pSGNode->GetSGParent() && m_pSGNode->GetSGParent()->IsSlowParent()) {
static_cast<KX_SlowParentRelation *>(m_pSGNode->GetSGParent()->GetParentRelation())->SetTimeOffset(val);
return 0;
} else {
return 0;
}
}
}
if (PySequence_Check(value))
{
if (attr == "orientation")
{
MT_Matrix3x3 rot;
if (PyObject_IsMT_Matrix(value, 3))
{
if (PyMatTo(value, rot))
{
NodeSetLocalOrientation(rot);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
if (PySequence_Size(value) == 4)
{
MT_Quaternion qrot;
if (PyVecTo(value, qrot))
{
rot.setRotation(qrot);
NodeSetLocalOrientation(rot);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
if (PySequence_Size(value) == 3)
{
MT_Vector3 erot;
if (PyVecTo(value, erot))
{
rot.setEuler(erot);
NodeSetLocalOrientation(rot);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
PyErr_SetString(PyExc_AttributeError, "could not set the orientation from a 3x3 matrix, quaternion or euler sequence");
return 1;
}
if (attr == "position")
{
MT_Point3 pos;
if (PyVecTo(value, pos))
{
NodeSetLocalPosition(pos);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
if (attr == "scaling")
{
MT_Vector3 scale;
if (PyVecTo(value, scale))
{
NodeSetLocalScale(scale);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
}
if (PyString_Check(value))
{
if (attr == "name")
{
m_name = PyString_AsString(value);
return 0;
}
}
/* Need to have parent settable here too */
return SCA_IObject::_setattr(attr, value);
}
PyObject* KX_GameObject::PyGetLinearVelocity(PyObject* self, PyObject* args)
{
// only can get the velocity if we have a physics object connected to us...
int local = 0;
if (PyArg_ParseTuple(args,"|i",&local))
{
return PyObjectFrom(GetLinearVelocity((local!=0)));
}
else
{
return NULL;
}
}
PyObject* KX_GameObject::PySetLinearVelocity(PyObject* self, PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args,"O|i",&pyvect,&local)) {
MT_Vector3 velocity;
if (PyVecTo(pyvect, velocity)) {
setLinearVelocity(velocity, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyGetAngularVelocity(PyObject* self, PyObject* args)
{
// only can get the velocity if we have a physics object connected to us...
int local = 0;
if (PyArg_ParseTuple(args,"|i",&local))
{
return PyObjectFrom(GetAngularVelocity((local!=0)));
}
else
{
return NULL;
}
}
PyObject* KX_GameObject::PySetAngularVelocity(PyObject* self, PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args,"O|i",&pyvect,&local)) {
MT_Vector3 velocity;
if (PyVecTo(pyvect, velocity)) {
setAngularVelocity(velocity, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PySetVisible(PyObject* self, PyObject* value)
{
int visible = PyInt_AsLong(value);
if (visible==-1 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "expected 0 or 1");
return NULL;
}
SetVisible(visible != 0);
UpdateBuckets();
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetVisible(PyObject* self)
{
return PyInt_FromLong(m_bVisible);
}
PyObject* KX_GameObject::PyGetState(PyObject* self)
{
int state = 0;
state |= GetState();
return PyInt_FromLong(state);
}
PyObject* KX_GameObject::PySetState(PyObject* self, PyObject* value)
{
int state_i = PyInt_AsLong(value);
unsigned int state = 0;
if (state_i == -1 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "expected an int bit field");
return NULL;
}
state |= state_i;
if ((state & ((1<<30)-1)) == 0) {
PyErr_SetString(PyExc_AttributeError, "The state bitfield was not between 0 and 30 (1<<0 and 1<<29)");
return NULL;
}
SetState(state);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetVelocity(PyObject* self, PyObject* args)
{
// only can get the velocity if we have a physics object connected to us...
MT_Vector3 velocity(0.0,0.0,0.0);
MT_Point3 point(0.0,0.0,0.0);
PyObject* pypos = NULL;
if (PyArg_ParseTuple(args, "|O", &pypos))
{
if (pypos)
PyVecTo(pypos, point);
}
else {
return NULL;
}
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetVelocity(point);
}
return PyObjectFrom(velocity);
}
PyObject* KX_GameObject::PyGetMass(PyObject* self)
{
return PyFloat_FromDouble(GetPhysicsController()->GetMass());
}
PyObject* KX_GameObject::PyGetReactionForce(PyObject* self)
{
// only can get the velocity if we have a physics object connected to us...
return PyObjectFrom(GetPhysicsController()->getReactionForce());
}
PyObject* KX_GameObject::PyEnableRigidBody(PyObject* self)
{
GetPhysicsController()->setRigidBody(true);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyDisableRigidBody(PyObject* self)
{
GetPhysicsController()->setRigidBody(false);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetParent(PyObject* self)
{
KX_GameObject* parent = this->GetParent();
if (parent)
{
parent->AddRef();
return parent;
}
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PySetParent(PyObject* self, PyObject* value)
{
if (!PyObject_TypeCheck(value, &KX_GameObject::Type)) {
PyErr_SetString(PyExc_TypeError, "expected a KX_GameObject type");
return NULL;
}
// The object we want to set as parent
CValue *m_ob = (CValue*)value;
KX_GameObject *obj = ((KX_GameObject*)m_ob);
KX_Scene *scene = PHY_GetActiveScene();
this->SetParent(scene, obj);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyRemoveParent(PyObject* self)
{
KX_Scene *scene = PHY_GetActiveScene();
this->RemoveParent(scene);
Py_RETURN_NONE;
}
static void walk_children(SG_Node* node, CListValue* list, bool recursive)
{
NodeList& children = node->GetSGChildren();
for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit)
{
SG_Node* childnode = (*childit);
CValue* childobj = (CValue*)childnode->GetSGClientObject();
if (childobj != NULL) // This is a GameObject
{
// add to the list
list->Add(childobj->AddRef());
}
// if the childobj is NULL then this may be an inverse parent link
// so a non recursive search should still look down this node.
if (recursive || childobj==NULL) {
walk_children(childnode, list, recursive);
}
}
}
PyObject* KX_GameObject::PyGetChildren(PyObject* self)
{
CListValue* list = new CListValue();
walk_children(m_pSGNode, list, 0);
return list;
}
PyObject* KX_GameObject::PyGetChildrenRecursive(PyObject* self)
{
CListValue* list = new CListValue();
walk_children(m_pSGNode, list, 1);
return list;
}
PyObject* KX_GameObject::PyGetMesh(PyObject* self, PyObject* args)
{
int mesh = 0;
if (!PyArg_ParseTuple(args, "|i", &mesh))
return NULL; // python sets a simple error
if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0)
{
KX_MeshProxy* meshproxy = new KX_MeshProxy(m_meshes[mesh]);
return meshproxy;
}
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PySetCollisionMargin(PyObject* self, PyObject* value)
{
float collisionMargin = PyFloat_AsDouble(value);
if (collisionMargin==-1 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "expected a float");
return NULL;
}
if (m_pPhysicsController1)
{
m_pPhysicsController1->setMargin(collisionMargin);
Py_RETURN_NONE;
}
PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller");
return NULL;
}
PyObject* KX_GameObject::PyApplyImpulse(PyObject* self, PyObject* args)
{
PyObject* pyattach;
PyObject* pyimpulse;
if (!m_pPhysicsController1) {
PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller");
return NULL;
}
if (PyArg_ParseTuple(args, "OO", &pyattach, &pyimpulse))
{
MT_Point3 attach;
MT_Vector3 impulse;
if (PyVecTo(pyattach, attach) && PyVecTo(pyimpulse, impulse))
{
m_pPhysicsController1->applyImpulse(attach, impulse);
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PySuspendDynamics(PyObject* self)
{
SuspendDynamics();
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyRestoreDynamics(PyObject* self)
{
RestoreDynamics();
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetOrientation(PyObject* self) //keywords
{
return PyObjectFrom(NodeGetWorldOrientation());
}
PyObject* KX_GameObject::PySetOrientation(PyObject* self, PyObject* value)
{
MT_Matrix3x3 matrix;
if (PyObject_IsMT_Matrix(value, 3) && PyMatTo(value, matrix))
{
NodeSetLocalOrientation(matrix);
NodeUpdateGS(0.f,true);
Py_RETURN_NONE;
}
MT_Quaternion quat;
if (PyVecTo(value, quat))
{
matrix.setRotation(quat);
NodeSetLocalOrientation(matrix);
NodeUpdateGS(0.f,true);
Py_RETURN_NONE;
}
return NULL;
}
PyObject* KX_GameObject::PyAlignAxisToVect(PyObject* self, PyObject* args)
{
PyObject* pyvect;
int axis = 2; //z axis is the default
float fac = 1.0;
if (PyArg_ParseTuple(args,"O|if",&pyvect,&axis, &fac))
{
MT_Vector3 vect;
if (PyVecTo(pyvect, vect))
{
if (fac<=0.0) Py_RETURN_NONE; // Nothing to do.
if (fac> 1.0) fac= 1.0;
AlignAxisToVect(vect,axis,fac);
NodeUpdateGS(0.f,true);
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyGetAxisVect(PyObject* self, PyObject* value)
{
MT_Vector3 vect;
if (PyVecTo(value, vect))
{
return PyObjectFrom(NodeGetWorldOrientation() * vect);
}
return NULL;
}
PyObject* KX_GameObject::PySetPosition(PyObject* self, PyObject* value)
{
MT_Point3 pos;
if (PyVecTo(value, pos))
{
NodeSetLocalPosition(pos);
NodeUpdateGS(0.f,true);
Py_RETURN_NONE;
}
return NULL;
}
PyObject* KX_GameObject::PyGetPhysicsId(PyObject* self)
{
KX_IPhysicsController* ctrl = GetPhysicsController();
uint_ptr physid=0;
if (ctrl)
{
physid= (uint_ptr)ctrl->GetUserData();
}
return PyInt_FromLong((long)physid);
}
PyObject* KX_GameObject::PyGetPropertyNames(PyObject* self)
{
return ConvertKeysToPython();
}
KX_PYMETHODDEF_DOC(KX_GameObject, getDistanceTo,
"getDistanceTo(other): get distance to another point/KX_GameObject")
{
MT_Point3 b;
if (PyVecArgTo(args, b))
{
return PyFloat_FromDouble(NodeGetWorldPosition().distance(b));
}
PyErr_Clear();
PyObject *pyother;
KX_GameObject *other;
if (PyArg_ParseTuple(args, "O", &pyother) && ConvertPythonToGameObject(pyother, &other, false))
{
return PyFloat_FromDouble(NodeGetWorldPosition().distance(other->NodeGetWorldPosition()));
}
return NULL;
}
KX_PYMETHODDEF_DOC(KX_GameObject, getVectTo,
"getVectTo(other): get vector and the distance to another point/KX_GameObject\n"
"Returns a 3-tuple with (distance,worldVector,localVector)\n")
{
MT_Point3 toPoint, fromPoint;
MT_Vector3 toDir, locToDir;
MT_Scalar distance;
PyObject *returnValue;
PyObject *pyother;
if (!PyVecArgTo(args, toPoint))
{
PyErr_Clear();
KX_GameObject *other;
if (PyArg_ParseTuple(args, "O", &pyother) && ConvertPythonToGameObject(pyother, &other, false))
{
toPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "Expected a 3D Vector or GameObject type");
return NULL;
}
}
fromPoint = NodeGetWorldPosition();
toDir = toPoint-fromPoint;
distance = toDir.length();
if (MT_fuzzyZero(distance))
{
//cout << "getVectTo() Error: Null vector!\n";
locToDir = toDir = MT_Vector3(0.0,0.0,0.0);
distance = 0.0;
} else {
toDir.normalize();
locToDir = toDir * NodeGetWorldOrientation();
}
returnValue = PyTuple_New(3);
if (returnValue) { // very unlikely to fail, python sets a memory error here.
PyTuple_SET_ITEM(returnValue, 0, PyFloat_FromDouble(distance));
PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(toDir));
PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(locToDir));
}
return returnValue;
}
bool KX_GameObject::RayHit(KX_ClientObjectInfo* client, KX_RayCast* result, void * const data)
{
KX_GameObject* hitKXObj = client->m_gameobject;
// if X-ray option is selected, the unwnted objects were not tested, so get here only with true hit
// if not, all objects were tested and the front one may not be the correct one.
if (m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL)
{
m_pHitObject = hitKXObj;
return true;
}
// return true to stop RayCast::RayTest from looping, the above test was decisive
// We would want to loop only if we want to get more than one hit point
return true;
}
/* this function is used to pre-filter the object before casting the ray on them.
This is useful for "X-Ray" option when we want to see "through" unwanted object.
*/
bool KX_GameObject::NeedRayCast(KX_ClientObjectInfo* client)
{
KX_GameObject* hitKXObj = client->m_gameobject;
if (client->m_type > KX_ClientObjectInfo::ACTOR)
{
// Unknown type of object, skip it.
// Should not occur as the sensor objects are filtered in RayTest()
printf("Invalid client type %d found in ray casting\n", client->m_type);
return false;
}
// if X-Ray option is selected, skip object that don't match the criteria as we see through them
// if not, test all objects because we don't know yet which one will be on front
if (!m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL)
{
return true;
}
// skip the object
return false;
}
KX_PYMETHODDEF_DOC(KX_GameObject, rayCastTo,
"rayCastTo(other,dist,prop): look towards another point/KX_GameObject and return first object hit within dist that matches prop\n"
" prop = property name that object must have; can be omitted => detect any object\n"
" dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to other\n"
" other = 3-tuple or object reference")
{
MT_Point3 toPoint;
PyObject* pyarg;
float dist = 0.0f;
char *propName = NULL;
if (!PyArg_ParseTuple(args,"O|fs", &pyarg, &dist, &propName)) {
return NULL; // python sets simple error
}
if (!PyVecTo(pyarg, toPoint))
{
KX_GameObject *other;
PyErr_Clear();
if (ConvertPythonToGameObject(pyarg, &other, false))
{
toPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "the first argument to rayCastTo must be a vector or a KX_GameObject");
return NULL;
}
}
MT_Point3 fromPoint = NodeGetWorldPosition();
if (dist != 0.0f)
{
MT_Vector3 toDir = toPoint-fromPoint;
toDir.normalize();
toPoint = fromPoint + (dist) * toDir;
}
PHY_IPhysicsEnvironment* pe = GetPhysicsEnvironment();
KX_IPhysicsController *spc = GetPhysicsController();
KX_GameObject *parent = GetParent();
if (!spc && parent)
spc = parent->GetPhysicsController();
if (parent)
parent->Release();
m_pHitObject = NULL;
if (propName)
m_testPropName = propName;
else
m_testPropName.SetLength(0);
KX_RayCast::Callback<KX_GameObject> callback(this,spc);
KX_RayCast::RayTest(pe, fromPoint, toPoint, callback);
if (m_pHitObject)
{
m_pHitObject->AddRef();
return m_pHitObject;
}
Py_RETURN_NONE;
}
KX_PYMETHODDEF_DOC(KX_GameObject, rayCast,
"rayCast(to,from,dist,prop,face,xray,poly): cast a ray and return 3-tuple (object,hit,normal) or 4-tuple (object,hit,normal,polygon) of contact point with object within dist that matches prop.\n"
" If no hit, return (None,None,None) or (None,None,None,None).\n"
" to = 3-tuple or object reference for destination of ray (if object, use center of object)\n"
" from = 3-tuple or object reference for origin of ray (if object, use center of object)\n"
" Can be None or omitted => start from self object center\n"
" dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to to\n"
" prop = property name that object must have; can be omitted => detect any object\n"
" face = normal option: 1=>return face normal; 0 or omitted => normal is oriented towards origin\n"
" xray = X-ray option: 1=>skip objects that don't match prop; 0 or omitted => stop on first object\n"
" poly = polygon option: 1=>return value is a 4-tuple and the 4th element is a KX_PolyProxy object\n"
" which can be None if hit object has no mesh or if there is no hit\n"
" If 0 or omitted, return value is a 3-tuple\n"
"Note: The object on which you call this method matters: the ray will ignore it.\n"
" prop and xray option interact as follow:\n"
" prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray\n"
" prop off, xray on : idem\n"
" prop on, xray off: return closest hit if it matches prop, no hit otherwise\n"
" prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray\n")
{
MT_Point3 toPoint;
MT_Point3 fromPoint;
PyObject* pyto;
PyObject* pyfrom = NULL;
float dist = 0.0f;
char *propName = NULL;
KX_GameObject *other;
int face=0, xray=0, poly=0;
if (!PyArg_ParseTuple(args,"O|Ofsiii", &pyto, &pyfrom, &dist, &propName, &face, &xray, &poly)) {
return NULL; // Python sets a simple error
}
if (!PyVecTo(pyto, toPoint))
{
PyErr_Clear();
if (ConvertPythonToGameObject(pyto, &other, false))
{
toPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "the first argument to rayCast must be a vector or a KX_GameObject");
return NULL;
}
}
if (!pyfrom || pyfrom == Py_None)
{
fromPoint = NodeGetWorldPosition();
}
else if (!PyVecTo(pyfrom, fromPoint))
{
PyErr_Clear();
if (ConvertPythonToGameObject(pyfrom, &other, false))
{
fromPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "the second optional argument to rayCast must be a vector or a KX_GameObject");
return NULL;
}
}
if (dist != 0.0f) {
MT_Vector3 toDir = toPoint-fromPoint;
if (MT_fuzzyZero(toDir.length2())) {
return Py_BuildValue("OOO", Py_None, Py_None, Py_None);
}
toDir.normalize();
toPoint = fromPoint + (dist) * toDir;
} else if (MT_fuzzyZero((toPoint-fromPoint).length2())) {
return Py_BuildValue("OOO", Py_None, Py_None, Py_None);
}
PHY_IPhysicsEnvironment* pe = GetPhysicsEnvironment();
KX_IPhysicsController *spc = GetPhysicsController();
KX_GameObject *parent = GetParent();
if (!spc && parent)
spc = parent->GetPhysicsController();
if (parent)
parent->Release();
m_pHitObject = NULL;
if (propName)
m_testPropName = propName;
else
m_testPropName.SetLength(0);
m_xray = xray;
// to get the hit results
KX_RayCast::Callback<KX_GameObject> callback(this,spc,NULL,face);
KX_RayCast::RayTest(pe, fromPoint, toPoint, callback);
if (m_pHitObject)
{
PyObject* returnValue = (poly) ? PyTuple_New(4) : PyTuple_New(3);
if (returnValue) { // unlikely this would ever fail, if it does python sets an error
PyTuple_SET_ITEM(returnValue, 0, m_pHitObject->AddRef());
PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(callback.m_hitPoint));
PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(callback.m_hitNormal));
if (poly)
{
if (callback.m_hitMesh)
{
// if this field is set, then we can trust that m_hitPolygon is a valid polygon
RAS_Polygon* poly = callback.m_hitMesh->GetPolygon(callback.m_hitPolygon);
KX_PolyProxy* polyproxy = new KX_PolyProxy(callback.m_hitMesh, poly);
PyTuple_SET_ITEM(returnValue, 3, polyproxy);
}
else
{
Py_INCREF(Py_None);
PyTuple_SET_ITEM(returnValue, 3, Py_None);
}
}
}
return returnValue;
}
// no hit
if (poly)
return Py_BuildValue("OOOO", Py_None, Py_None, Py_None, Py_None);
else
return Py_BuildValue("OOO", Py_None, Py_None, Py_None);
}
/* ---------------------------------------------------------------------
* Some stuff taken from the header
* --------------------------------------------------------------------- */
void KX_GameObject::Relink(GEN_Map<GEN_HashedPtr, void*> *map_parameter)
{
// we will relink the sensors and actuators that use object references
// if the object is part of the replicated hierarchy, use the new
// object reference instead
SCA_SensorList& sensorlist = GetSensors();
SCA_SensorList::iterator sit;
for (sit=sensorlist.begin(); sit != sensorlist.end(); sit++)
{
(*sit)->Relink(map_parameter);
}
SCA_ActuatorList& actuatorlist = GetActuators();
SCA_ActuatorList::iterator ait;
for (ait=actuatorlist.begin(); ait != actuatorlist.end(); ait++)
{
(*ait)->Relink(map_parameter);
}
}
bool ConvertPythonToGameObject(PyObject * value, KX_GameObject **object, bool py_none_ok)
{
if (value==NULL) {
PyErr_SetString(PyExc_TypeError, "Error in ConvertPythonToGameObject, python pointer NULL, should never happen");
*object = NULL;
return false;
}
if (value==Py_None) {
*object = NULL;
if (py_none_ok) {
return true;
} else {
PyErr_SetString(PyExc_TypeError, "Expected KX_GameObject or a string for a name of a KX_GameObject, None is invalid");
return false;
}
return (py_none_ok ? true : false);
}
if (PyString_Check(value)) {
*object = (KX_GameObject *)SCA_ILogicBrick::m_sCurrentLogicManager->GetGameObjectByName(STR_String( PyString_AsString(value) ));
if (*object) {
return true;
} else {
PyErr_SetString(PyExc_ValueError, "Requested name did not match any KX_GameObject");
return false;
}
}
if (PyObject_TypeCheck(value, &KX_GameObject::Type)) {
*object = static_cast<KX_GameObject*>(value);
return true;
}
*object = NULL;
if (py_none_ok) {
PyErr_SetString(PyExc_TypeError, "Expect a KX_GameObject, a string or None");
} else {
PyErr_SetString(PyExc_TypeError, "Expect a KX_GameObject or a string");
}
return false;
}