blender/source/gameengine/Converter/KX_ConvertSensors.cpp
Benoit Bolsee 386122ada6 BGE performance, 4th round: logic
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or 
full scan. The logic engine is now free of memory allocation, which is
an important stability factor. 

The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on 
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.

The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the 
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:

Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.

With the new system, the sequential execution of controllers is still 
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.

If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.

Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
2009-05-10 20:53:58 +00:00

821 lines
30 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Conversion of Blender data blocks to KX sensor system
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef WIN32
#pragma warning (disable : 4786)
#endif //WIN32
#include "KX_BlenderSceneConverter.h"
#include "KX_ConvertSensors.h"
/* This little block needed for linking to Blender... */
#ifdef WIN32
#include "BLI_winstuff.h"
#endif
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_sensor_types.h"
#include "DNA_actuator_types.h" /* for SENS_ALL_KEYS ? this define is
probably misplaced */
/* end of blender include block */
#include "RAS_IPolygonMaterial.h"
// Sensors
#include "KX_GameObject.h"
#include "RAS_MeshObject.h"
#include "SCA_KeyboardSensor.h"
#include "SCA_MouseSensor.h"
#include "SCA_AlwaysSensor.h"
#include "KX_TouchSensor.h"
#include "KX_NearSensor.h"
#include "KX_RadarSensor.h"
#include "KX_MouseFocusSensor.h"
#include "SCA_JoystickSensor.h"
#include "KX_NetworkMessageSensor.h"
#include "SCA_ActuatorSensor.h"
#include "SCA_DelaySensor.h"
#include "SCA_PropertySensor.h"
#include "SCA_RandomSensor.h"
#include "KX_RaySensor.h"
#include "SCA_EventManager.h"
#include "SCA_LogicManager.h"
#include "KX_BlenderInputDevice.h"
#include "KX_Scene.h"
#include "IntValue.h"
#include "KX_BlenderKeyboardDevice.h"
#include "KX_BlenderGL.h"
#include "RAS_ICanvas.h"
#include "PHY_IPhysicsEnvironment.h"
#include "KX_KetsjiEngine.h"
#include "KX_BlenderSceneConverter.h"
// this map is Blender specific: a conversion between blender and ketsji enums
std::map<int,SCA_IInputDevice::KX_EnumInputs> gReverseKeyTranslateTable;
void BL_ConvertSensors(struct Object* blenderobject,
class KX_GameObject* gameobj,
SCA_LogicManager* logicmgr,
KX_Scene* kxscene,
KX_KetsjiEngine* kxengine,
SCA_IInputDevice* keydev,
int activeLayerBitInfo,
bool isInActiveLayer,
RAS_ICanvas* canvas,
KX_BlenderSceneConverter* converter
)
{
static bool reverseTableConverted = false;
if (!reverseTableConverted)
{
reverseTableConverted = true;
/* The reverse table. In order to not confuse ourselves, we */
/* immediately convert all events that come in to KX codes. */
gReverseKeyTranslateTable[LEFTMOUSE ] = SCA_IInputDevice::KX_LEFTMOUSE;
gReverseKeyTranslateTable[MIDDLEMOUSE ] = SCA_IInputDevice::KX_MIDDLEMOUSE;
gReverseKeyTranslateTable[RIGHTMOUSE ] = SCA_IInputDevice::KX_RIGHTMOUSE;
gReverseKeyTranslateTable[WHEELUPMOUSE ] = SCA_IInputDevice::KX_WHEELUPMOUSE;
gReverseKeyTranslateTable[WHEELDOWNMOUSE ] = SCA_IInputDevice::KX_WHEELDOWNMOUSE;
gReverseKeyTranslateTable[MOUSEX ] = SCA_IInputDevice::KX_MOUSEX;
gReverseKeyTranslateTable[MOUSEY ] = SCA_IInputDevice::KX_MOUSEY;
// TIMERS
gReverseKeyTranslateTable[TIMER0 ] = SCA_IInputDevice::KX_TIMER0;
gReverseKeyTranslateTable[TIMER1 ] = SCA_IInputDevice::KX_TIMER1;
gReverseKeyTranslateTable[TIMER2 ] = SCA_IInputDevice::KX_TIMER2;
gReverseKeyTranslateTable[TIMER3 ] = SCA_IInputDevice::KX_TIMER3;
// SYSTEM
gReverseKeyTranslateTable[KEYBD ] = SCA_IInputDevice::KX_KEYBD;
gReverseKeyTranslateTable[RAWKEYBD ] = SCA_IInputDevice::KX_RAWKEYBD;
gReverseKeyTranslateTable[REDRAW ] = SCA_IInputDevice::KX_REDRAW;
gReverseKeyTranslateTable[INPUTCHANGE ] = SCA_IInputDevice::KX_INPUTCHANGE;
gReverseKeyTranslateTable[QFULL ] = SCA_IInputDevice::KX_QFULL;
gReverseKeyTranslateTable[WINFREEZE ] = SCA_IInputDevice::KX_WINFREEZE;
gReverseKeyTranslateTable[WINTHAW ] = SCA_IInputDevice::KX_WINTHAW;
gReverseKeyTranslateTable[WINCLOSE ] = SCA_IInputDevice::KX_WINCLOSE;
gReverseKeyTranslateTable[WINQUIT ] = SCA_IInputDevice::KX_WINQUIT;
gReverseKeyTranslateTable[Q_FIRSTTIME ] = SCA_IInputDevice::KX_Q_FIRSTTIME;
// standard keyboard
gReverseKeyTranslateTable[AKEY ] = SCA_IInputDevice::KX_AKEY;
gReverseKeyTranslateTable[BKEY ] = SCA_IInputDevice::KX_BKEY;
gReverseKeyTranslateTable[CKEY ] = SCA_IInputDevice::KX_CKEY;
gReverseKeyTranslateTable[DKEY ] = SCA_IInputDevice::KX_DKEY;
gReverseKeyTranslateTable[EKEY ] = SCA_IInputDevice::KX_EKEY;
gReverseKeyTranslateTable[FKEY ] = SCA_IInputDevice::KX_FKEY;
gReverseKeyTranslateTable[GKEY ] = SCA_IInputDevice::KX_GKEY;
gReverseKeyTranslateTable[HKEY ] = SCA_IInputDevice::KX_HKEY;
gReverseKeyTranslateTable[IKEY ] = SCA_IInputDevice::KX_IKEY;
gReverseKeyTranslateTable[JKEY ] = SCA_IInputDevice::KX_JKEY;
gReverseKeyTranslateTable[KKEY ] = SCA_IInputDevice::KX_KKEY;
gReverseKeyTranslateTable[LKEY ] = SCA_IInputDevice::KX_LKEY;
gReverseKeyTranslateTable[MKEY ] = SCA_IInputDevice::KX_MKEY;
gReverseKeyTranslateTable[NKEY ] = SCA_IInputDevice::KX_NKEY;
gReverseKeyTranslateTable[OKEY ] = SCA_IInputDevice::KX_OKEY;
gReverseKeyTranslateTable[PKEY ] = SCA_IInputDevice::KX_PKEY;
gReverseKeyTranslateTable[QKEY ] = SCA_IInputDevice::KX_QKEY;
gReverseKeyTranslateTable[RKEY ] = SCA_IInputDevice::KX_RKEY;
gReverseKeyTranslateTable[SKEY ] = SCA_IInputDevice::KX_SKEY;
gReverseKeyTranslateTable[TKEY ] = SCA_IInputDevice::KX_TKEY;
gReverseKeyTranslateTable[UKEY ] = SCA_IInputDevice::KX_UKEY;
gReverseKeyTranslateTable[VKEY ] = SCA_IInputDevice::KX_VKEY;
gReverseKeyTranslateTable[WKEY ] = SCA_IInputDevice::KX_WKEY;
gReverseKeyTranslateTable[XKEY ] = SCA_IInputDevice::KX_XKEY;
gReverseKeyTranslateTable[YKEY ] = SCA_IInputDevice::KX_YKEY;
gReverseKeyTranslateTable[ZKEY ] = SCA_IInputDevice::KX_ZKEY;
gReverseKeyTranslateTable[ZEROKEY ] = SCA_IInputDevice::KX_ZEROKEY;
gReverseKeyTranslateTable[ONEKEY ] = SCA_IInputDevice::KX_ONEKEY;
gReverseKeyTranslateTable[TWOKEY ] = SCA_IInputDevice::KX_TWOKEY;
gReverseKeyTranslateTable[THREEKEY ] = SCA_IInputDevice::KX_THREEKEY;
gReverseKeyTranslateTable[FOURKEY ] = SCA_IInputDevice::KX_FOURKEY;
gReverseKeyTranslateTable[FIVEKEY ] = SCA_IInputDevice::KX_FIVEKEY;
gReverseKeyTranslateTable[SIXKEY ] = SCA_IInputDevice::KX_SIXKEY;
gReverseKeyTranslateTable[SEVENKEY ] = SCA_IInputDevice::KX_SEVENKEY;
gReverseKeyTranslateTable[EIGHTKEY ] = SCA_IInputDevice::KX_EIGHTKEY;
gReverseKeyTranslateTable[NINEKEY ] = SCA_IInputDevice::KX_NINEKEY;
gReverseKeyTranslateTable[CAPSLOCKKEY ] = SCA_IInputDevice::KX_CAPSLOCKKEY;
gReverseKeyTranslateTable[LEFTCTRLKEY ] = SCA_IInputDevice::KX_LEFTCTRLKEY;
gReverseKeyTranslateTable[LEFTALTKEY ] = SCA_IInputDevice::KX_LEFTALTKEY;
gReverseKeyTranslateTable[RIGHTALTKEY ] = SCA_IInputDevice::KX_RIGHTALTKEY;
gReverseKeyTranslateTable[RIGHTCTRLKEY ] = SCA_IInputDevice::KX_RIGHTCTRLKEY;
gReverseKeyTranslateTable[RIGHTSHIFTKEY ] = SCA_IInputDevice::KX_RIGHTSHIFTKEY;
gReverseKeyTranslateTable[LEFTSHIFTKEY ] = SCA_IInputDevice::KX_LEFTSHIFTKEY;
gReverseKeyTranslateTable[ESCKEY ] = SCA_IInputDevice::KX_ESCKEY;
gReverseKeyTranslateTable[TABKEY ] = SCA_IInputDevice::KX_TABKEY;
gReverseKeyTranslateTable[RETKEY ] = SCA_IInputDevice::KX_RETKEY;
gReverseKeyTranslateTable[SPACEKEY ] = SCA_IInputDevice::KX_SPACEKEY;
gReverseKeyTranslateTable[LINEFEEDKEY ] = SCA_IInputDevice::KX_LINEFEEDKEY;
gReverseKeyTranslateTable[BACKSPACEKEY ] = SCA_IInputDevice::KX_BACKSPACEKEY;
gReverseKeyTranslateTable[DELKEY ] = SCA_IInputDevice::KX_DELKEY;
gReverseKeyTranslateTable[SEMICOLONKEY ] = SCA_IInputDevice::KX_SEMICOLONKEY;
gReverseKeyTranslateTable[PERIODKEY ] = SCA_IInputDevice::KX_PERIODKEY;
gReverseKeyTranslateTable[COMMAKEY ] = SCA_IInputDevice::KX_COMMAKEY;
gReverseKeyTranslateTable[QUOTEKEY ] = SCA_IInputDevice::KX_QUOTEKEY;
gReverseKeyTranslateTable[ACCENTGRAVEKEY ] = SCA_IInputDevice::KX_ACCENTGRAVEKEY;
gReverseKeyTranslateTable[MINUSKEY ] = SCA_IInputDevice::KX_MINUSKEY;
gReverseKeyTranslateTable[SLASHKEY ] = SCA_IInputDevice::KX_SLASHKEY;
gReverseKeyTranslateTable[BACKSLASHKEY ] = SCA_IInputDevice::KX_BACKSLASHKEY;
gReverseKeyTranslateTable[EQUALKEY ] = SCA_IInputDevice::KX_EQUALKEY;
gReverseKeyTranslateTable[LEFTBRACKETKEY ] = SCA_IInputDevice::KX_LEFTBRACKETKEY;
gReverseKeyTranslateTable[RIGHTBRACKETKEY ] = SCA_IInputDevice::KX_RIGHTBRACKETKEY;
gReverseKeyTranslateTable[LEFTARROWKEY ] = SCA_IInputDevice::KX_LEFTARROWKEY;
gReverseKeyTranslateTable[DOWNARROWKEY ] = SCA_IInputDevice::KX_DOWNARROWKEY;
gReverseKeyTranslateTable[RIGHTARROWKEY ] = SCA_IInputDevice::KX_RIGHTARROWKEY;
gReverseKeyTranslateTable[UPARROWKEY ] = SCA_IInputDevice::KX_UPARROWKEY;
gReverseKeyTranslateTable[PAD2 ] = SCA_IInputDevice::KX_PAD2;
gReverseKeyTranslateTable[PAD4 ] = SCA_IInputDevice::KX_PAD4;
gReverseKeyTranslateTable[PAD6 ] = SCA_IInputDevice::KX_PAD6;
gReverseKeyTranslateTable[PAD8 ] = SCA_IInputDevice::KX_PAD8;
gReverseKeyTranslateTable[PAD1 ] = SCA_IInputDevice::KX_PAD1;
gReverseKeyTranslateTable[PAD3 ] = SCA_IInputDevice::KX_PAD3;
gReverseKeyTranslateTable[PAD5 ] = SCA_IInputDevice::KX_PAD5;
gReverseKeyTranslateTable[PAD7 ] = SCA_IInputDevice::KX_PAD7;
gReverseKeyTranslateTable[PAD9 ] = SCA_IInputDevice::KX_PAD9;
gReverseKeyTranslateTable[PADPERIOD ] = SCA_IInputDevice::KX_PADPERIOD;
gReverseKeyTranslateTable[PADSLASHKEY ] = SCA_IInputDevice::KX_PADSLASHKEY;
gReverseKeyTranslateTable[PADASTERKEY ] = SCA_IInputDevice::KX_PADASTERKEY;
gReverseKeyTranslateTable[PAD0 ] = SCA_IInputDevice::KX_PAD0;
gReverseKeyTranslateTable[PADMINUS ] = SCA_IInputDevice::KX_PADMINUS;
gReverseKeyTranslateTable[PADENTER ] = SCA_IInputDevice::KX_PADENTER;
gReverseKeyTranslateTable[PADPLUSKEY ] = SCA_IInputDevice::KX_PADPLUSKEY;
gReverseKeyTranslateTable[F1KEY ] = SCA_IInputDevice::KX_F1KEY;
gReverseKeyTranslateTable[F2KEY ] = SCA_IInputDevice::KX_F2KEY;
gReverseKeyTranslateTable[F3KEY ] = SCA_IInputDevice::KX_F3KEY;
gReverseKeyTranslateTable[F4KEY ] = SCA_IInputDevice::KX_F4KEY;
gReverseKeyTranslateTable[F5KEY ] = SCA_IInputDevice::KX_F5KEY;
gReverseKeyTranslateTable[F6KEY ] = SCA_IInputDevice::KX_F6KEY;
gReverseKeyTranslateTable[F7KEY ] = SCA_IInputDevice::KX_F7KEY;
gReverseKeyTranslateTable[F8KEY ] = SCA_IInputDevice::KX_F8KEY;
gReverseKeyTranslateTable[F9KEY ] = SCA_IInputDevice::KX_F9KEY;
gReverseKeyTranslateTable[F10KEY ] = SCA_IInputDevice::KX_F10KEY;
gReverseKeyTranslateTable[F11KEY ] = SCA_IInputDevice::KX_F11KEY;
gReverseKeyTranslateTable[F12KEY ] = SCA_IInputDevice::KX_F12KEY;
gReverseKeyTranslateTable[PAUSEKEY ] = SCA_IInputDevice::KX_PAUSEKEY;
gReverseKeyTranslateTable[INSERTKEY ] = SCA_IInputDevice::KX_INSERTKEY;
gReverseKeyTranslateTable[HOMEKEY ] = SCA_IInputDevice::KX_HOMEKEY;
gReverseKeyTranslateTable[PAGEUPKEY ] = SCA_IInputDevice::KX_PAGEUPKEY;
gReverseKeyTranslateTable[PAGEDOWNKEY ] = SCA_IInputDevice::KX_PAGEDOWNKEY;
gReverseKeyTranslateTable[ENDKEY ] = SCA_IInputDevice::KX_ENDKEY;
}
int executePriority = 0;
int uniqueint = 0;
int count = 0;
bSensor* sens = (bSensor*)blenderobject->sensors.first;
bool pos_pulsemode = false;
bool neg_pulsemode = false;
int frequency = 0;
bool invert = false;
bool level = false;
bool tap = false;
while (sens)
{
sens = sens->next;
count++;
}
gameobj->ReserveSensor(count);
sens = (bSensor*)blenderobject->sensors.first;
while(sens)
{
SCA_ISensor* gamesensor=NULL;
/* All sensors have a pulse toggle, frequency, and invert field. */
/* These are extracted here, and set when the sensor is added to the */
/* list. */
pos_pulsemode = (sens->pulse & SENS_PULSE_REPEAT)!=0;
neg_pulsemode = (sens->pulse & SENS_NEG_PULSE_MODE)!=0;
frequency = sens->freq;
invert = !(sens->invert == 0);
level = !(sens->level == 0);
tap = !(sens->tap == 0);
switch (sens->type)
{
case SENS_ALWAYS:
{
SCA_EventManager* eventmgr = logicmgr->FindEventManager(SCA_EventManager::ALWAYS_EVENTMGR);
if (eventmgr)
{
gamesensor = new SCA_AlwaysSensor(eventmgr, gameobj);
}
break;
}
case SENS_DELAY:
{
// we can reuse the Always event manager for the delay sensor
SCA_EventManager* eventmgr = logicmgr->FindEventManager(SCA_EventManager::ALWAYS_EVENTMGR);
if (eventmgr)
{
bDelaySensor* delaysensor = (bDelaySensor*)sens->data;
gamesensor = new SCA_DelaySensor(eventmgr,
gameobj,
delaysensor->delay,
delaysensor->duration,
(delaysensor->flag & SENS_DELAY_REPEAT) != 0);
}
break;
}
case SENS_COLLISION:
{
SCA_EventManager* eventmgr = logicmgr->FindEventManager(SCA_EventManager::TOUCH_EVENTMGR);
if (eventmgr)
{
// collision sensor can sense both materials and properties.
bool bFindMaterial = false, bTouchPulse = false;
bCollisionSensor* blendertouchsensor = (bCollisionSensor*)sens->data;
bFindMaterial = (blendertouchsensor->mode & SENS_COLLISION_MATERIAL);
bTouchPulse = (blendertouchsensor->mode & SENS_COLLISION_PULSE);
STR_String touchPropOrMatName = ( bFindMaterial ?
blendertouchsensor->materialName:
(blendertouchsensor->name ? blendertouchsensor->name: ""));
if (gameobj->GetPhysicsController())
{
gamesensor = new KX_TouchSensor(eventmgr,
gameobj,
bFindMaterial,
bTouchPulse,
touchPropOrMatName);
}
}
break;
}
case SENS_TOUCH:
{
SCA_EventManager* eventmgr = logicmgr->FindEventManager(SCA_EventManager::TOUCH_EVENTMGR);
if (eventmgr)
{
STR_String touchpropertyname;
bTouchSensor* blendertouchsensor = (bTouchSensor*)sens->data;
if (blendertouchsensor->ma)
{
touchpropertyname = (char*) (blendertouchsensor->ma->id.name+2);
}
bool bFindMaterial = true;
if (gameobj->GetPhysicsController())
{
gamesensor = new KX_TouchSensor(eventmgr,
gameobj,
bFindMaterial,
false,
touchpropertyname);
}
}
break;
}
case SENS_MESSAGE:
{
KX_NetworkEventManager* eventmgr = (KX_NetworkEventManager*)
logicmgr->FindEventManager(SCA_EventManager::NETWORK_EVENTMGR);
if (eventmgr) {
bMessageSensor* msgSens = (bMessageSensor*) sens->data;
/* Get our NetworkScene */
NG_NetworkScene *NetworkScene = kxscene->GetNetworkScene();
/* filter on the incoming subjects, might be empty */
STR_String subject = (msgSens->subject
? (char*)msgSens->subject
: "");
gamesensor = new KX_NetworkMessageSensor(
eventmgr, // our eventmanager
NetworkScene, // our NetworkScene
gameobj, // the sensor controlling object
subject); // subject to filter on
}
break;
}
case SENS_NEAR:
{
SCA_EventManager* eventmgr = logicmgr->FindEventManager(SCA_EventManager::TOUCH_EVENTMGR);
if (eventmgr)
{
STR_String nearpropertyname;
bNearSensor* blendernearsensor = (bNearSensor*)sens->data;
if (blendernearsensor->name)
{
// only objects that own this property will be taken into account
nearpropertyname = (char*) blendernearsensor->name;
}
//DT_ShapeHandle shape = DT_Sphere(0.0);
// this sumoObject is not deleted by a gameobj, so delete it ourself
// later (memleaks)!
float radius = blendernearsensor->dist;
PHY__Vector3 pos;
const MT_Vector3& wpos = gameobj->NodeGetWorldPosition();
pos[0] = wpos[0];
pos[1] = wpos[1];
pos[2] = wpos[2];
pos[3] = 0.f;
bool bFindMaterial = false;
PHY_IPhysicsController* physCtrl = kxscene->GetPhysicsEnvironment()->CreateSphereController(radius,pos);
//will be done in KX_TouchEventManager::RegisterSensor()
//if (isInActiveLayer)
// kxscene->GetPhysicsEnvironment()->addSensor(physCtrl);
gamesensor = new KX_NearSensor(eventmgr,gameobj,
blendernearsensor->dist,
blendernearsensor->resetdist,
bFindMaterial,
nearpropertyname,kxscene,
physCtrl
);
}
break;
}
case SENS_KEYBOARD:
{
/* temporary input device, for converting the code for the keyboard sensor */
bKeyboardSensor* blenderkeybdsensor = (bKeyboardSensor*)sens->data;
SCA_KeyboardManager* eventmgr = (SCA_KeyboardManager*) logicmgr->FindEventManager(SCA_EventManager::KEYBOARD_EVENTMGR);
if (eventmgr)
{
gamesensor = new SCA_KeyboardSensor(eventmgr,
gReverseKeyTranslateTable[blenderkeybdsensor->key],
gReverseKeyTranslateTable[blenderkeybdsensor->qual],
gReverseKeyTranslateTable[blenderkeybdsensor->qual2],
(blenderkeybdsensor->type == SENS_ALL_KEYS),
blenderkeybdsensor->targetName,
blenderkeybdsensor->toggleName,
gameobj); // blenderkeybdsensor->pad);
}
break;
}
case SENS_MOUSE:
{
int keytype = SCA_MouseSensor::KX_MOUSESENSORMODE_NODEF;
int trackfocus = 0;
bMouseSensor *bmouse = (bMouseSensor *)sens->data;
/* There are two main types of mouse sensors. If there is
* no focus-related behaviour requested, we can make do
* with a basic sensor. This cuts down memory usage and
* gives a slight performance gain. */
SCA_MouseManager *eventmgr
= (SCA_MouseManager*) logicmgr->FindEventManager(SCA_EventManager::MOUSE_EVENTMGR);
if (eventmgr) {
/* Determine key mode. There is at most one active mode. */
switch (bmouse->type) {
case BL_SENS_MOUSE_LEFT_BUTTON:
keytype = SCA_MouseSensor::KX_MOUSESENSORMODE_LEFTBUTTON;
break;
case BL_SENS_MOUSE_MIDDLE_BUTTON:
keytype = SCA_MouseSensor::KX_MOUSESENSORMODE_MIDDLEBUTTON;
break;
case BL_SENS_MOUSE_RIGHT_BUTTON:
keytype = SCA_MouseSensor::KX_MOUSESENSORMODE_RIGHTBUTTON;
break;
case BL_SENS_MOUSE_WHEEL_UP:
keytype = SCA_MouseSensor::KX_MOUSESENSORMODE_WHEELUP;
break;
case BL_SENS_MOUSE_WHEEL_DOWN:
keytype = SCA_MouseSensor::KX_MOUSESENSORMODE_WHEELDOWN;
break;
case BL_SENS_MOUSE_MOVEMENT:
keytype = SCA_MouseSensor::KX_MOUSESENSORMODE_MOVEMENT;
break;
case BL_SENS_MOUSE_MOUSEOVER:
trackfocus = 1;
break;
case BL_SENS_MOUSE_MOUSEOVER_ANY:
trackfocus = 2;
break;
default:
; /* error */
}
/* initial mouse position */
int startx = canvas->GetWidth()/2;
int starty = canvas->GetHeight()/2;
if (!trackfocus) {
/* plain, simple mouse sensor */
gamesensor = new SCA_MouseSensor(eventmgr,
startx,starty,
keytype,
gameobj);
} else {
/* give us a focus-aware sensor */
gamesensor = new KX_MouseFocusSensor(eventmgr,
startx,
starty,
keytype,
trackfocus,
kxscene,
kxengine,
gameobj);
}
} else {
// cout << "\n Could't find mouse event manager..."; - should throw an error here...
}
break;
}
case SENS_PROPERTY:
{
bPropertySensor* blenderpropsensor = (bPropertySensor*) sens->data;
SCA_EventManager* eventmgr
= logicmgr->FindEventManager(SCA_EventManager::PROPERTY_EVENTMGR);
if (eventmgr)
{
STR_String propname=blenderpropsensor->name;
STR_String propval=blenderpropsensor->value;
STR_String propmaxval=blenderpropsensor->maxvalue;
SCA_PropertySensor::KX_PROPSENSOR_TYPE
propchecktype = SCA_PropertySensor::KX_PROPSENSOR_NODEF;
/* Better do an explicit conversion here! (was implicit */
/* before...) */
switch(blenderpropsensor->type) {
case SENS_PROP_EQUAL:
propchecktype = SCA_PropertySensor::KX_PROPSENSOR_EQUAL;
break;
case SENS_PROP_NEQUAL:
propchecktype = SCA_PropertySensor::KX_PROPSENSOR_NOTEQUAL;
break;
case SENS_PROP_INTERVAL:
propchecktype = SCA_PropertySensor::KX_PROPSENSOR_INTERVAL;
break;
case SENS_PROP_CHANGED:
propchecktype = SCA_PropertySensor::KX_PROPSENSOR_CHANGED;
break;
case SENS_PROP_EXPRESSION:
propchecktype = SCA_PropertySensor::KX_PROPSENSOR_EXPRESSION;
/* error */
break;
default:
; /* error */
}
gamesensor = new SCA_PropertySensor(eventmgr,gameobj,propname,propval,propmaxval,propchecktype);
}
break;
}
case SENS_ACTUATOR:
{
bActuatorSensor* blenderactsensor = (bActuatorSensor*) sens->data;
// we will reuse the property event manager, there is nothing special with this sensor
SCA_EventManager* eventmgr
= logicmgr->FindEventManager(SCA_EventManager::ACTUATOR_EVENTMGR);
if (eventmgr)
{
STR_String propname=blenderactsensor->name;
gamesensor = new SCA_ActuatorSensor(eventmgr,gameobj,propname);
}
break;
}
case SENS_RADAR:
{
SCA_EventManager* eventmgr = logicmgr->FindEventManager(SCA_EventManager::TOUCH_EVENTMGR);
if (eventmgr)
{
STR_String radarpropertyname;
STR_String touchpropertyname;
bRadarSensor* blenderradarsensor = (bRadarSensor*) sens->data;
int radaraxis = blenderradarsensor->axis;
if (blenderradarsensor->name)
{
// only objects that own this property will be taken into account
radarpropertyname = (char*) blenderradarsensor->name;
}
MT_Scalar coneheight = blenderradarsensor->range;
// janco: the angle was doubled, so should I divide the factor in 2
// or the blenderradarsensor->angle?
// nzc: the angle is the opening angle. We need to init with
// the axis-hull angle,so /2.0.
MT_Scalar factor = tan(MT_radians((blenderradarsensor->angle)/2.0));
//MT_Scalar coneradius = coneheight * (factor / 2);
MT_Scalar coneradius = coneheight * factor;
// this sumoObject is not deleted by a gameobj, so delete it ourself
// later (memleaks)!
MT_Scalar smallmargin = 0.0;
MT_Scalar largemargin = 0.0;
bool bFindMaterial = false;
PHY_IPhysicsController* ctrl = kxscene->GetPhysicsEnvironment()->CreateConeController(coneradius,coneheight);
gamesensor = new KX_RadarSensor(
eventmgr,
gameobj,
ctrl,
coneradius,
coneheight,
radaraxis,
smallmargin,
largemargin,
bFindMaterial,
radarpropertyname,
kxscene);
}
break;
}
case SENS_RAY:
{
bRaySensor* blenderraysensor = (bRaySensor*) sens->data;
//blenderradarsensor->angle;
SCA_EventManager* eventmgr = logicmgr->FindEventManager(SCA_EventManager::RAY_EVENTMGR);
if (eventmgr)
{
bool bFindMaterial = (blenderraysensor->mode & SENS_COLLISION_MATERIAL);
bool bXRay = (blenderraysensor->mode & SENS_RAY_XRAY);
STR_String checkname = (bFindMaterial? blenderraysensor->matname : blenderraysensor->propname);
// don't want to get rays of length 0.0 or so
double distance = (blenderraysensor->range < 0.01 ? 0.01 : blenderraysensor->range );
int axis = blenderraysensor->axisflag;
gamesensor = new KX_RaySensor(eventmgr,
gameobj,
checkname,
bFindMaterial,
bXRay,
distance,
axis,
kxscene);
}
break;
}
case SENS_RANDOM:
{
bRandomSensor* blenderrndsensor = (bRandomSensor*) sens->data;
// some files didn't write randomsensor, avoid crash now for NULL ptr's
if (blenderrndsensor)
{
SCA_EventManager* eventmgr = logicmgr->FindEventManager(SCA_EventManager::RANDOM_EVENTMGR);
if (eventmgr)
{
int randomSeed = blenderrndsensor->seed;
gamesensor = new SCA_RandomSensor(eventmgr, gameobj, randomSeed);
}
}
break;
}
case SENS_JOYSTICK:
{
int joysticktype = SCA_JoystickSensor::KX_JOYSENSORMODE_NODEF;
bJoystickSensor* bjoy = (bJoystickSensor*) sens->data;
SCA_JoystickManager *eventmgr
= (SCA_JoystickManager*) logicmgr->FindEventManager(SCA_EventManager::JOY_EVENTMGR);
if (eventmgr)
{
int axis =0;
int axisf =0;
int button =0;
int hat =0;
int hatf =0;
int prec =0;
switch(bjoy->type)
{
case SENS_JOY_AXIS:
axis = bjoy->axis;
axisf = bjoy->axisf;
prec = bjoy->precision;
joysticktype = SCA_JoystickSensor::KX_JOYSENSORMODE_AXIS;
break;
case SENS_JOY_BUTTON:
button = bjoy->button;
joysticktype = SCA_JoystickSensor::KX_JOYSENSORMODE_BUTTON;
break;
case SENS_JOY_HAT:
hat = bjoy->hat;
hatf = bjoy->hatf;
joysticktype = SCA_JoystickSensor::KX_JOYSENSORMODE_HAT;
break;
case SENS_JOY_AXIS_SINGLE:
axis = bjoy->axis_single;
prec = bjoy->precision;
joysticktype = SCA_JoystickSensor::KX_JOYSENSORMODE_AXIS_SINGLE;
break;
default:
printf("Error: bad case statement\n");
break;
}
gamesensor = new SCA_JoystickSensor(
eventmgr,
gameobj,
bjoy->joyindex,
joysticktype,
axis,axisf,
prec,
button,
hat,hatf,
(bjoy->flag & SENS_JOY_ANY_EVENT));
}
else
{
printf("Error there was a problem finding the event manager\n");
}
break;
}
default:
{
}
}
if (gamesensor)
{
gamesensor->SetExecutePriority(executePriority++);
STR_String uniquename = sens->name;
uniquename += "#SENS#";
uniqueint++;
CIntValue* uniqueval = new CIntValue(uniqueint);
uniquename += uniqueval->GetText();
uniqueval->Release();
/* Conversion succeeded, so we can set the generic props here. */
gamesensor->SetPulseMode(pos_pulsemode,
neg_pulsemode,
frequency);
gamesensor->SetInvert(invert);
gamesensor->SetLevel(level);
gamesensor->SetTap(tap);
gamesensor->SetName(sens->name);
gameobj->AddSensor(gamesensor);
// only register to manager if it's in an active layer
// Make registration dynamic: only when sensor is activated
//if (isInActiveLayer)
// gamesensor->RegisterToManager();
gamesensor->ReserveController(sens->totlinks);
for (int i=0;i<sens->totlinks;i++)
{
bController* linkedcont = (bController*) sens->links[i];
if (linkedcont) {
SCA_IController* gamecont = converter->FindGameController(linkedcont);
if (gamecont) {
logicmgr->RegisterToSensor(gamecont,gamesensor);
} else {
printf(
"Warning, sensor \"%s\" could not find its controller "
"(link %d of %d) from object \"%s\"\n"
"\tthere has been an error converting the blender controller for the game engine,"
"logic may be incorrect\n", sens->name, i+1, sens->totlinks, blenderobject->id.name+2);
}
} else {
printf(
"Warning, sensor \"%s\" has lost a link to a controller "
"(link %d of %d) from object \"%s\"\n"
"\tpossible causes are partially appended objects or an error reading the file,"
"logic may be incorrect\n", sens->name, i+1, sens->totlinks, blenderobject->id.name+2);
}
}
// special case: Keyboard sensor with no link
// this combination is usually used for key logging.
if (sens->type == SENS_KEYBOARD && sens->totlinks == 0) {
// Force the registration so that the sensor runs
gamesensor->IncLink();
}
// done with gamesensor
gamesensor->Release();
}
sens=sens->next;
}
}