blender/intern/cycles/kernel/svm/svm_closure.h
Brecht Van Lommel 21a535840d Fix T53270: crash with multiscatter GGX after recent refactoring.
In fact this was an existing issue when exceeding the number of available
closure, but it's more common now that we set the number to 0 for shadows
and emission
2017-11-09 20:28:00 +01:00

1008 lines
32 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Closure Nodes */
ccl_device void svm_node_glass_setup(ShaderData *sd, MicrofacetBsdf *bsdf, int type, float eta, float roughness, bool refract)
{
if(type == CLOSURE_BSDF_SHARP_GLASS_ID) {
if(refract) {
bsdf->alpha_y = 0.0f;
bsdf->alpha_x = 0.0f;
bsdf->ior = eta;
sd->flag |= bsdf_refraction_setup(bsdf);
}
else {
bsdf->alpha_y = 0.0f;
bsdf->alpha_x = 0.0f;
bsdf->ior = 0.0f;
sd->flag |= bsdf_reflection_setup(bsdf);
}
}
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID) {
bsdf->alpha_x = roughness;
bsdf->alpha_y = roughness;
bsdf->ior = eta;
if(refract)
sd->flag |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
else
sd->flag |= bsdf_microfacet_beckmann_setup(bsdf);
}
else {
bsdf->alpha_x = roughness;
bsdf->alpha_y = roughness;
bsdf->ior = eta;
if(refract)
sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
else
sd->flag |= bsdf_microfacet_ggx_setup(bsdf);
}
}
ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag, int *offset)
{
uint type, param1_offset, param2_offset;
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
/* note we read this extra node before weight check, so offset is added */
uint4 data_node = read_node(kg, offset);
if(mix_weight == 0.0f)
return;
float3 N = stack_valid(data_node.x)? stack_load_float3(stack, data_node.x): sd->N;
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
switch(type) {
#ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_ID: {
uint specular_offset, roughness_offset, specular_tint_offset, anisotropic_offset, sheen_offset,
sheen_tint_offset, clearcoat_offset, clearcoat_roughness_offset, eta_offset, transmission_offset,
anisotropic_rotation_offset, transmission_roughness_offset;
uint4 data_node2 = read_node(kg, offset);
float3 T = stack_load_float3(stack, data_node.y);
decode_node_uchar4(data_node.z, &specular_offset, &roughness_offset, &specular_tint_offset, &anisotropic_offset);
decode_node_uchar4(data_node.w, &sheen_offset, &sheen_tint_offset, &clearcoat_offset, &clearcoat_roughness_offset);
decode_node_uchar4(data_node2.x, &eta_offset, &transmission_offset, &anisotropic_rotation_offset, &transmission_roughness_offset);
// get Disney principled parameters
float metallic = param1;
float subsurface = param2;
float specular = stack_load_float(stack, specular_offset);
float roughness = stack_load_float(stack, roughness_offset);
float specular_tint = stack_load_float(stack, specular_tint_offset);
float anisotropic = stack_load_float(stack, anisotropic_offset);
float sheen = stack_load_float(stack, sheen_offset);
float sheen_tint = stack_load_float(stack, sheen_tint_offset);
float clearcoat = stack_load_float(stack, clearcoat_offset);
float clearcoat_roughness = stack_load_float(stack, clearcoat_roughness_offset);
float transmission = stack_load_float(stack, transmission_offset);
float anisotropic_rotation = stack_load_float(stack, anisotropic_rotation_offset);
float transmission_roughness = stack_load_float(stack, transmission_roughness_offset);
float eta = fmaxf(stack_load_float(stack, eta_offset), 1e-5f);
ClosureType distribution = stack_valid(data_node2.y) ? (ClosureType) data_node2.y : CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
/* rotate tangent */
if(anisotropic_rotation != 0.0f)
T = rotate_around_axis(T, N, anisotropic_rotation * M_2PI_F);
/* calculate ior */
float ior = (sd->flag & SD_BACKFACING) ? 1.0f / eta : eta;
// calculate fresnel for refraction
float cosNO = dot(N, sd->I);
float fresnel = fresnel_dielectric_cos(cosNO, ior);
// calculate weights of the diffuse and specular part
float diffuse_weight = (1.0f - saturate(metallic)) * (1.0f - saturate(transmission));
float final_transmission = saturate(transmission) * (1.0f - saturate(metallic));
float specular_weight = (1.0f - final_transmission);
// get the base color
uint4 data_base_color = read_node(kg, offset);
float3 base_color = stack_valid(data_base_color.x) ? stack_load_float3(stack, data_base_color.x) :
make_float3(__uint_as_float(data_base_color.y), __uint_as_float(data_base_color.z), __uint_as_float(data_base_color.w));
// get the additional clearcoat normal and subsurface scattering radius
uint4 data_cn_ssr = read_node(kg, offset);
float3 clearcoat_normal = stack_valid(data_cn_ssr.x) ? stack_load_float3(stack, data_cn_ssr.x) : sd->N;
float3 subsurface_radius = stack_valid(data_cn_ssr.y) ? stack_load_float3(stack, data_cn_ssr.y) : make_float3(1.0f, 1.0f, 1.0f);
// get the subsurface color
uint4 data_subsurface_color = read_node(kg, offset);
float3 subsurface_color = stack_valid(data_subsurface_color.x) ? stack_load_float3(stack, data_subsurface_color.x) :
make_float3(__uint_as_float(data_subsurface_color.y), __uint_as_float(data_subsurface_color.z), __uint_as_float(data_subsurface_color.w));
float3 weight = sd->svm_closure_weight * mix_weight;
#ifdef __SUBSURFACE__
float3 mixed_ss_base_color = subsurface_color * subsurface + base_color * (1.0f - subsurface);
float3 subsurf_weight = weight * mixed_ss_base_color * diffuse_weight;
float subsurf_sample_weight = fabsf(average(subsurf_weight));
/* disable in case of diffuse ancestor, can't see it well then and
* adds considerably noise due to probabilities of continuing path
* getting lower and lower */
if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR) {
subsurface = 0.0f;
/* need to set the base color in this case such that the
* rays get the correctly mixed color after transmitting
* the object */
base_color = mixed_ss_base_color;
}
/* diffuse */
if(fabsf(average(mixed_ss_base_color)) > CLOSURE_WEIGHT_CUTOFF) {
if(subsurface <= CLOSURE_WEIGHT_CUTOFF && diffuse_weight > CLOSURE_WEIGHT_CUTOFF) {
float3 diff_weight = weight * base_color * diffuse_weight;
PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf*)bsdf_alloc(sd, sizeof(PrincipledDiffuseBsdf), diff_weight);
if(bsdf) {
bsdf->N = N;
bsdf->roughness = roughness;
/* setup bsdf */
sd->flag |= bsdf_principled_diffuse_setup(bsdf);
}
}
else if(subsurface > CLOSURE_WEIGHT_CUTOFF && subsurf_sample_weight > CLOSURE_WEIGHT_CUTOFF) {
/* radius * scale */
float3 radius = subsurface_radius * subsurface;
/* sharpness */
float sharpness = 0.0f;
/* texture color blur */
float texture_blur = 0.0f;
/* create one closure per color channel */
Bssrdf *bssrdf = bssrdf_alloc(sd, make_float3(subsurf_weight.x, 0.0f, 0.0f));
if(bssrdf) {
bssrdf->sample_weight = subsurf_sample_weight;
bssrdf->radius = radius.x;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = subsurface_color.x;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
bssrdf->roughness = roughness;
/* setup bsdf */
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, subsurf_weight.y, 0.0f));
if(bssrdf) {
bssrdf->sample_weight = subsurf_sample_weight;
bssrdf->radius = radius.y;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = subsurface_color.y;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
bssrdf->roughness = roughness;
/* setup bsdf */
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, subsurf_weight.z));
if(bssrdf) {
bssrdf->sample_weight = subsurf_sample_weight;
bssrdf->radius = radius.z;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = subsurface_color.z;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
bssrdf->roughness = roughness;
/* setup bsdf */
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
}
}
}
#else
/* diffuse */
if(diffuse_weight > CLOSURE_WEIGHT_CUTOFF) {
float3 diff_weight = weight * base_color * diffuse_weight;
PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf*)bsdf_alloc(sd, sizeof(PrincipledDiffuseBsdf), diff_weight);
if(bsdf) {
bsdf->N = N;
bsdf->roughness = roughness;
/* setup bsdf */
sd->flag |= bsdf_principled_diffuse_setup(bsdf);
}
}
#endif
/* sheen */
if(diffuse_weight > CLOSURE_WEIGHT_CUTOFF && sheen > CLOSURE_WEIGHT_CUTOFF) {
float m_cdlum = linear_rgb_to_gray(base_color);
float3 m_ctint = m_cdlum > 0.0f ? base_color / m_cdlum : make_float3(1.0f, 1.0f, 1.0f); // normalize lum. to isolate hue+sat
/* color of the sheen component */
float3 sheen_color = make_float3(1.0f, 1.0f, 1.0f) * (1.0f - sheen_tint) + m_ctint * sheen_tint;
float3 sheen_weight = weight * sheen * sheen_color * diffuse_weight;
PrincipledSheenBsdf *bsdf = (PrincipledSheenBsdf*)bsdf_alloc(sd, sizeof(PrincipledSheenBsdf), sheen_weight);
if(bsdf) {
bsdf->N = N;
/* setup bsdf */
sd->flag |= bsdf_principled_sheen_setup(bsdf);
}
}
/* specular reflection */
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0) {
#endif
if(specular_weight > CLOSURE_WEIGHT_CUTOFF && (specular > CLOSURE_WEIGHT_CUTOFF || metallic > CLOSURE_WEIGHT_CUTOFF)) {
float3 spec_weight = weight * specular_weight;
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), spec_weight);
if(!bsdf){
break;
}
MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
if(!extra) {
break;
}
bsdf->N = N;
bsdf->ior = (2.0f / (1.0f - safe_sqrtf(0.08f * specular))) - 1.0f;
bsdf->T = T;
bsdf->extra = extra;
float aspect = safe_sqrtf(1.0f - anisotropic * 0.9f);
float r2 = roughness * roughness;
bsdf->alpha_x = r2 / aspect;
bsdf->alpha_y = r2 * aspect;
float m_cdlum = 0.3f * base_color.x + 0.6f * base_color.y + 0.1f * base_color.z; // luminance approx.
float3 m_ctint = m_cdlum > 0.0f ? base_color / m_cdlum : make_float3(0.0f, 0.0f, 0.0f); // normalize lum. to isolate hue+sat
float3 tmp_col = make_float3(1.0f, 1.0f, 1.0f) * (1.0f - specular_tint) + m_ctint * specular_tint;
bsdf->extra->cspec0 = (specular * 0.08f * tmp_col) * (1.0f - metallic) + base_color * metallic;
bsdf->extra->color = base_color;
/* setup bsdf */
if(distribution == CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID || roughness <= 0.075f) /* use single-scatter GGX */
sd->flag |= bsdf_microfacet_ggx_aniso_fresnel_setup(bsdf, sd);
else /* use multi-scatter GGX */
sd->flag |= bsdf_microfacet_multi_ggx_aniso_fresnel_setup(bsdf, sd);
}
#ifdef __CAUSTICS_TRICKS__
}
#endif
/* BSDF */
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.caustics_reflective || kernel_data.integrator.caustics_refractive || (path_flag & PATH_RAY_DIFFUSE) == 0) {
#endif
if(final_transmission > CLOSURE_WEIGHT_CUTOFF) {
float3 glass_weight = weight * final_transmission;
float3 cspec0 = base_color * specular_tint + make_float3(1.0f, 1.0f, 1.0f) * (1.0f - specular_tint);
if(roughness <= 5e-2f || distribution == CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID) { /* use single-scatter GGX */
float refl_roughness = roughness;
/* reflection */
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
{
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), glass_weight*fresnel);
if(!bsdf) {
break;
}
MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
if(!extra) {
break;
}
bsdf->N = N;
bsdf->extra = extra;
bsdf->alpha_x = refl_roughness * refl_roughness;
bsdf->alpha_y = refl_roughness * refl_roughness;
bsdf->ior = ior;
bsdf->extra->color = base_color;
bsdf->extra->cspec0 = cspec0;
/* setup bsdf */
sd->flag |= bsdf_microfacet_ggx_fresnel_setup(bsdf, sd);
}
/* refraction */
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.caustics_refractive || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
{
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), base_color*glass_weight*(1.0f - fresnel));
if(!bsdf) {
break;
}
bsdf->N = N;
if(distribution == CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID)
transmission_roughness = 1.0f - (1.0f - refl_roughness) * (1.0f - transmission_roughness);
else
transmission_roughness = refl_roughness;
bsdf->alpha_x = transmission_roughness * transmission_roughness;
bsdf->alpha_y = transmission_roughness * transmission_roughness;
bsdf->ior = ior;
/* setup bsdf */
sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
}
}
else { /* use multi-scatter GGX */
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), glass_weight);
if(!bsdf) {
break;
}
MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
if(!extra) {
break;
}
bsdf->N = N;
bsdf->extra = extra;
bsdf->T = make_float3(0.0f, 0.0f, 0.0f);
bsdf->alpha_x = roughness * roughness;
bsdf->alpha_y = roughness * roughness;
bsdf->ior = ior;
bsdf->extra->color = base_color;
bsdf->extra->cspec0 = cspec0;
/* setup bsdf */
sd->flag |= bsdf_microfacet_multi_ggx_glass_fresnel_setup(bsdf, sd);
}
}
#ifdef __CAUSTICS_TRICKS__
}
#endif
/* clearcoat */
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0) {
#endif
if(clearcoat > CLOSURE_WEIGHT_CUTOFF) {
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
if(!bsdf) {
break;
}
MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
if(!extra) {
break;
}
bsdf->N = clearcoat_normal;
bsdf->ior = 1.5f;
bsdf->extra = extra;
bsdf->alpha_x = clearcoat_roughness * clearcoat_roughness;
bsdf->alpha_y = clearcoat_roughness * clearcoat_roughness;
bsdf->extra->cspec0 = make_float3(0.04f, 0.04f, 0.04f);
bsdf->extra->clearcoat = clearcoat;
/* setup bsdf */
sd->flag |= bsdf_microfacet_ggx_clearcoat_setup(bsdf, sd);
}
#ifdef __CAUSTICS_TRICKS__
}
#endif
break;
}
#endif /* __PRINCIPLED__ */
case CLOSURE_BSDF_DIFFUSE_ID: {
float3 weight = sd->svm_closure_weight * mix_weight;
OrenNayarBsdf *bsdf = (OrenNayarBsdf*)bsdf_alloc(sd, sizeof(OrenNayarBsdf), weight);
if(bsdf) {
bsdf->N = N;
float roughness = param1;
if(roughness == 0.0f) {
sd->flag |= bsdf_diffuse_setup((DiffuseBsdf*)bsdf);
}
else {
bsdf->roughness = roughness;
sd->flag |= bsdf_oren_nayar_setup(bsdf);
}
}
break;
}
case CLOSURE_BSDF_TRANSLUCENT_ID: {
float3 weight = sd->svm_closure_weight * mix_weight;
DiffuseBsdf *bsdf = (DiffuseBsdf*)bsdf_alloc(sd, sizeof(DiffuseBsdf), weight);
if(bsdf) {
bsdf->N = N;
sd->flag |= bsdf_translucent_setup(bsdf);
}
break;
}
case CLOSURE_BSDF_TRANSPARENT_ID: {
float3 weight = sd->svm_closure_weight * mix_weight;
bsdf_transparent_setup(sd, weight);
break;
}
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
float3 weight = sd->svm_closure_weight * mix_weight;
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
if(!bsdf) {
break;
}
bsdf->N = N;
bsdf->alpha_x = param1;
bsdf->alpha_y = param1;
bsdf->ior = 0.0f;
bsdf->extra = NULL;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFLECTION_ID)
sd->flag |= bsdf_reflection_setup(bsdf);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ID)
sd->flag |= bsdf_microfacet_beckmann_setup(bsdf);
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ID)
sd->flag |= bsdf_microfacet_ggx_setup(bsdf);
else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID) {
kernel_assert(stack_valid(data_node.z));
bsdf->extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
if(bsdf->extra) {
bsdf->extra->color = stack_load_float3(stack, data_node.z);
sd->flag |= bsdf_microfacet_multi_ggx_setup(bsdf);
}
}
else {
sd->flag |= bsdf_ashikhmin_shirley_setup(bsdf);
}
break;
}
case CLOSURE_BSDF_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
float3 weight = sd->svm_closure_weight * mix_weight;
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
if(bsdf) {
bsdf->N = N;
bsdf->extra = NULL;
float eta = fmaxf(param2, 1e-5f);
eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFRACTION_ID) {
bsdf->alpha_x = 0.0f;
bsdf->alpha_y = 0.0f;
bsdf->ior = eta;
sd->flag |= bsdf_refraction_setup(bsdf);
}
else {
bsdf->alpha_x = param1;
bsdf->alpha_y = param1;
bsdf->ior = eta;
if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID)
sd->flag |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
else
sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
}
}
break;
}
case CLOSURE_BSDF_SHARP_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective &&
!kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
{
break;
}
#endif
float3 weight = sd->svm_closure_weight * mix_weight;
/* index of refraction */
float eta = fmaxf(param2, 1e-5f);
eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* fresnel */
float cosNO = dot(N, sd->I);
float fresnel = fresnel_dielectric_cos(cosNO, eta);
float roughness = param1;
/* reflection */
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
{
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight*fresnel);
if(bsdf) {
bsdf->N = N;
bsdf->extra = NULL;
svm_node_glass_setup(sd, bsdf, type, eta, roughness, false);
}
}
/* refraction */
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.caustics_refractive || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
{
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight*(1.0f - fresnel));
if(bsdf) {
bsdf->N = N;
bsdf->extra = NULL;
svm_node_glass_setup(sd, bsdf, type, eta, roughness, true);
}
}
break;
}
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && !kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
float3 weight = sd->svm_closure_weight * mix_weight;
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
if(!bsdf) {
break;
}
MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
if(!extra) {
break;
}
bsdf->N = N;
bsdf->extra = extra;
bsdf->T = make_float3(0.0f, 0.0f, 0.0f);
bsdf->alpha_x = param1;
bsdf->alpha_y = param1;
float eta = fmaxf(param2, 1e-5f);
bsdf->ior = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
kernel_assert(stack_valid(data_node.z));
bsdf->extra->color = stack_load_float3(stack, data_node.z);
/* setup bsdf */
sd->flag |= bsdf_microfacet_multi_ggx_glass_setup(bsdf);
break;
}
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
float3 weight = sd->svm_closure_weight * mix_weight;
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
if(bsdf) {
bsdf->N = N;
bsdf->extra = NULL;
bsdf->T = stack_load_float3(stack, data_node.y);
/* rotate tangent */
float rotation = stack_load_float(stack, data_node.z);
if(rotation != 0.0f)
bsdf->T = rotate_around_axis(bsdf->T, bsdf->N, rotation * M_2PI_F);
/* compute roughness */
float roughness = param1;
float anisotropy = clamp(param2, -0.99f, 0.99f);
if(anisotropy < 0.0f) {
bsdf->alpha_x = roughness/(1.0f + anisotropy);
bsdf->alpha_y = roughness*(1.0f + anisotropy);
}
else {
bsdf->alpha_x = roughness*(1.0f - anisotropy);
bsdf->alpha_y = roughness/(1.0f - anisotropy);
}
bsdf->ior = 0.0f;
if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID) {
sd->flag |= bsdf_microfacet_beckmann_aniso_setup(bsdf);
}
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID) {
sd->flag |= bsdf_microfacet_ggx_aniso_setup(bsdf);
}
else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID) {
kernel_assert(stack_valid(data_node.w));
bsdf->extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
if(bsdf->extra) {
bsdf->extra->color = stack_load_float3(stack, data_node.w);
sd->flag |= bsdf_microfacet_multi_ggx_aniso_setup(bsdf);
}
}
else
sd->flag |= bsdf_ashikhmin_shirley_aniso_setup(bsdf);
}
break;
}
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID: {
float3 weight = sd->svm_closure_weight * mix_weight;
VelvetBsdf *bsdf = (VelvetBsdf*)bsdf_alloc(sd, sizeof(VelvetBsdf), weight);
if(bsdf) {
bsdf->N = N;
bsdf->sigma = saturate(param1);
sd->flag |= bsdf_ashikhmin_velvet_setup(bsdf);
}
break;
}
case CLOSURE_BSDF_GLOSSY_TOON_ID:
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
ATTR_FALLTHROUGH;
#endif
case CLOSURE_BSDF_DIFFUSE_TOON_ID: {
float3 weight = sd->svm_closure_weight * mix_weight;
ToonBsdf *bsdf = (ToonBsdf*)bsdf_alloc(sd, sizeof(ToonBsdf), weight);
if(bsdf) {
bsdf->N = N;
bsdf->size = param1;
bsdf->smooth = param2;
if(type == CLOSURE_BSDF_DIFFUSE_TOON_ID)
sd->flag |= bsdf_diffuse_toon_setup(bsdf);
else
sd->flag |= bsdf_glossy_toon_setup(bsdf);
}
break;
}
#ifdef __HAIR__
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID: {
float3 weight = sd->svm_closure_weight * mix_weight;
if(sd->flag & SD_BACKFACING && sd->type & PRIMITIVE_ALL_CURVE) {
/* todo: giving a fixed weight here will cause issues when
* mixing multiple BSDFS. energy will not be conserved and
* the throughput can blow up after multiple bounces. we
* better figure out a way to skip backfaces from rays
* spawned by transmission from the front */
bsdf_transparent_setup(sd, make_float3(1.0f, 1.0f, 1.0f));
}
else {
HairBsdf *bsdf = (HairBsdf*)bsdf_alloc(sd, sizeof(HairBsdf), weight);
if(bsdf) {
bsdf->N = N;
bsdf->roughness1 = param1;
bsdf->roughness2 = param2;
bsdf->offset = -stack_load_float(stack, data_node.z);
if(stack_valid(data_node.y)) {
bsdf->T = normalize(stack_load_float3(stack, data_node.y));
}
else if(!(sd->type & PRIMITIVE_ALL_CURVE)) {
bsdf->T = normalize(sd->dPdv);
bsdf->offset = 0.0f;
}
else
bsdf->T = normalize(sd->dPdu);
if(type == CLOSURE_BSDF_HAIR_REFLECTION_ID) {
sd->flag |= bsdf_hair_reflection_setup(bsdf);
}
else {
sd->flag |= bsdf_hair_transmission_setup(bsdf);
}
}
}
break;
}
#endif
#ifdef __SUBSURFACE__
case CLOSURE_BSSRDF_CUBIC_ID:
case CLOSURE_BSSRDF_GAUSSIAN_ID:
case CLOSURE_BSSRDF_BURLEY_ID: {
float3 albedo = sd->svm_closure_weight;
float3 weight = sd->svm_closure_weight * mix_weight;
float sample_weight = fabsf(average(weight));
/* disable in case of diffuse ancestor, can't see it well then and
* adds considerably noise due to probabilities of continuing path
* getting lower and lower */
if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR)
param1 = 0.0f;
if(sample_weight > CLOSURE_WEIGHT_CUTOFF) {
/* radius * scale */
float3 radius = stack_load_float3(stack, data_node.z)*param1;
/* sharpness */
float sharpness = stack_load_float(stack, data_node.w);
/* texture color blur */
float texture_blur = param2;
/* create one closure per color channel */
Bssrdf *bssrdf = bssrdf_alloc(sd, make_float3(weight.x, 0.0f, 0.0f));
if(bssrdf) {
bssrdf->sample_weight = sample_weight;
bssrdf->radius = radius.x;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = albedo.x;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, weight.y, 0.0f));
if(bssrdf) {
bssrdf->sample_weight = sample_weight;
bssrdf->radius = radius.y;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = albedo.y;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, weight.z));
if(bssrdf) {
bssrdf->sample_weight = sample_weight;
bssrdf->radius = radius.z;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = albedo.z;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
}
break;
}
#endif
default:
break;
}
}
ccl_device void svm_node_closure_volume(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag)
{
#ifdef __VOLUME__
uint type, param1_offset, param2_offset;
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
if(mix_weight == 0.0f)
return;
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
/* Compute scattering coefficient. */
float density = mix_weight * fmaxf(param1, 0.0f);
float3 weight = sd->svm_closure_weight;
if(type == CLOSURE_VOLUME_ABSORPTION_ID) {
weight = make_float3(1.0f, 1.0f, 1.0f) - weight;
}
weight *= density;
/* Add closure for volume scattering. */
if(type == CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
HenyeyGreensteinVolume *volume = (HenyeyGreensteinVolume*)bsdf_alloc(sd, sizeof(HenyeyGreensteinVolume), weight);
if(volume) {
volume->g = param2; /* g */
sd->flag |= volume_henyey_greenstein_setup(volume);
}
}
/* Sum total extinction weight. */
volume_extinction_setup(sd, weight);
#endif
}
ccl_device void svm_node_closure_emission(ShaderData *sd, float *stack, uint4 node)
{
uint mix_weight_offset = node.y;
float3 weight = sd->svm_closure_weight;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
weight *= mix_weight;
}
emission_setup(sd, weight);
}
ccl_device void svm_node_closure_background(ShaderData *sd, float *stack, uint4 node)
{
uint mix_weight_offset = node.y;
float3 weight = sd->svm_closure_weight;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
weight *= mix_weight;
}
background_setup(sd, weight);
}
ccl_device void svm_node_closure_holdout(ShaderData *sd, float *stack, uint4 node)
{
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, sd->svm_closure_weight * mix_weight);
}
else
closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, sd->svm_closure_weight);
sd->flag |= SD_HOLDOUT;
}
ccl_device void svm_node_closure_ambient_occlusion(ShaderData *sd, float *stack, uint4 node)
{
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_AMBIENT_OCCLUSION_ID, sd->svm_closure_weight * mix_weight);
}
else
closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_AMBIENT_OCCLUSION_ID, sd->svm_closure_weight);
sd->flag |= SD_AO;
}
/* Closure Nodes */
ccl_device_inline void svm_node_closure_store_weight(ShaderData *sd, float3 weight)
{
sd->svm_closure_weight = weight;
}
ccl_device void svm_node_closure_set_weight(ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__uint_as_float(r), __uint_as_float(g), __uint_as_float(b));
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_closure_weight(ShaderData *sd, float *stack, uint weight_offset)
{
float3 weight = stack_load_float3(stack, weight_offset);
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_emission_weight(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset = node.y;
uint strength_offset = node.z;
float strength = stack_load_float(stack, strength_offset);
float3 weight = stack_load_float3(stack, color_offset)*strength;
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_mix_closure(ShaderData *sd, float *stack, uint4 node)
{
/* fetch weight from blend input, previous mix closures,
* and write to stack to be used by closure nodes later */
uint weight_offset, in_weight_offset, weight1_offset, weight2_offset;
decode_node_uchar4(node.y, &weight_offset, &in_weight_offset, &weight1_offset, &weight2_offset);
float weight = stack_load_float(stack, weight_offset);
weight = saturate(weight);
float in_weight = (stack_valid(in_weight_offset))? stack_load_float(stack, in_weight_offset): 1.0f;
if(stack_valid(weight1_offset))
stack_store_float(stack, weight1_offset, in_weight*(1.0f - weight));
if(stack_valid(weight2_offset))
stack_store_float(stack, weight2_offset, in_weight*weight);
}
/* (Bump) normal */
ccl_device void svm_node_set_normal(KernelGlobals *kg, ShaderData *sd, float *stack, uint in_direction, uint out_normal)
{
float3 normal = stack_load_float3(stack, in_direction);
sd->N = normal;
stack_store_float3(stack, out_normal, normal);
}
CCL_NAMESPACE_END