blender/intern/cycles/render/mesh.cpp

1016 lines
26 KiB
C++
Raw Normal View History

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "bvh.h"
#include "bvh_build.h"
#include "camera.h"
#include "device.h"
#include "shader.h"
#include "light.h"
#include "mesh.h"
#include "object.h"
#include "scene.h"
#include "osl_globals.h"
#include "util_cache.h"
#include "util_foreach.h"
#include "util_progress.h"
#include "util_set.h"
CCL_NAMESPACE_BEGIN
/* Mesh */
Mesh::Mesh()
{
need_update = true;
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
displacement_method = DISPLACE_BUMP;
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
bounds = BoundBox::empty;
bvh = NULL;
tri_offset = 0;
vert_offset = 0;
curve_offset = 0;
curvekey_offset = 0;
attributes.triangle_mesh = this;
curve_attributes.curve_mesh = this;
}
Mesh::~Mesh()
{
delete bvh;
}
void Mesh::reserve(int numverts, int numtris, int numcurves, int numcurvekeys)
{
/* reserve space to add verts and triangles later */
verts.resize(numverts);
triangles.resize(numtris);
shader.resize(numtris);
smooth.resize(numtris);
curve_keys.resize(numcurvekeys);
curves.resize(numcurves);
attributes.reserve();
curve_attributes.reserve();
}
void Mesh::clear()
{
/* clear all verts and triangles */
verts.clear();
triangles.clear();
shader.clear();
smooth.clear();
curve_keys.clear();
curves.clear();
attributes.clear();
curve_attributes.clear();
used_shaders.clear();
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
}
void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_)
{
Triangle tri;
tri.v[0] = v0;
tri.v[1] = v1;
tri.v[2] = v2;
triangles.push_back(tri);
shader.push_back(shader_);
smooth.push_back(smooth_);
}
void Mesh::add_curve_key(float3 co, float radius)
{
CurveKey key;
key.co = co;
key.radius = radius;
curve_keys.push_back(key);
}
void Mesh::add_curve(int first_key, int num_keys, int shader)
{
Curve curve;
curve.first_key = first_key;
curve.num_keys = num_keys;
curve.shader = shader;
curves.push_back(curve);
}
void Mesh::compute_bounds()
{
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
BoundBox bnds = BoundBox::empty;
size_t verts_size = verts.size();
size_t curve_keys_size = curve_keys.size();
for(size_t i = 0; i < verts_size; i++)
bnds.grow(verts[i]);
for(size_t i = 0; i < curve_keys_size; i++)
bnds.grow(curve_keys[i].co, curve_keys[i].radius);
/* happens mostly on empty meshes */
if(!bnds.valid())
bnds.grow(make_float3(0.0f, 0.0f, 0.0f));
bounds = bnds;
}
void Mesh::add_face_normals()
{
/* don't compute if already there */
if(attributes.find(ATTR_STD_FACE_NORMAL))
return;
/* get attributes */
Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL);
float3 *fN = attr_fN->data_float3();
/* compute face normals */
size_t triangles_size = triangles.size();
bool flip = transform_negative_scaled;
if(triangles_size) {
float3 *verts_ptr = &verts[0];
Triangle *triangles_ptr = &triangles[0];
for(size_t i = 0; i < triangles_size; i++) {
Triangle t = triangles_ptr[i];
float3 v0 = verts_ptr[t.v[0]];
float3 v1 = verts_ptr[t.v[1]];
float3 v2 = verts_ptr[t.v[2]];
float3 norm = cross(v1 - v0, v2 - v0);
float normlen = len(norm);
if(normlen == 0.0f)
fN[i] = make_float3(0.0f, 0.0f, 0.0f);
else
fN[i] = norm / normlen;
if(flip)
fN[i] = -fN[i];
}
}
/* expected to be in local space */
if(transform_applied) {
Transform ntfm = transform_inverse(transform_normal);
for(size_t i = 0; i < triangles_size; i++)
fN[i] = normalize(transform_direction(&ntfm, fN[i]));
}
}
void Mesh::add_vertex_normals()
{
/* don't compute if already there */
if(attributes.find(ATTR_STD_VERTEX_NORMAL))
return;
/* get attributes */
Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *fN = attr_fN->data_float3();
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
memset(vN, 0, verts.size()*sizeof(float3));
size_t verts_size = verts.size();
size_t triangles_size = triangles.size();
bool flip = transform_negative_scaled;
if(triangles_size) {
Triangle *triangles_ptr = &triangles[0];
for(size_t i = 0; i < triangles_size; i++)
for(size_t j = 0; j < 3; j++)
vN[triangles_ptr[i].v[j]] += fN[i];
}
for(size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
if(flip)
vN[i] = -vN[i];
}
}
void Mesh::pack_normals(Scene *scene, float4 *normal, float4 *vnormal)
{
Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
float3 *fN = attr_fN->data_float3();
float3 *vN = attr_vN->data_float3();
int shader_id = 0;
uint last_shader = -1;
bool last_smooth = false;
size_t triangles_size = triangles.size();
uint *shader_ptr = (shader.size())? &shader[0]: NULL;
bool do_transform = transform_applied;
Transform ntfm = transform_normal;
for(size_t i = 0; i < triangles_size; i++) {
float3 fNi = fN[i];
if(do_transform)
fNi = normalize(transform_direction(&ntfm, fNi));
normal[i].x = fNi.x;
normal[i].y = fNi.y;
normal[i].z = fNi.z;
/* stuff shader id in here too */
if(shader_ptr[i] != last_shader || last_smooth != smooth[i]) {
last_shader = shader_ptr[i];
last_smooth = smooth[i];
shader_id = scene->shader_manager->get_shader_id(last_shader, this, last_smooth);
}
normal[i].w = __int_as_float(shader_id);
}
size_t verts_size = verts.size();
for(size_t i = 0; i < verts_size; i++) {
float3 vNi = vN[i];
if(do_transform)
vNi = normalize(transform_direction(&ntfm, vNi));
vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f);
}
}
void Mesh::pack_verts(float4 *tri_verts, float4 *tri_vindex, size_t vert_offset)
{
size_t verts_size = verts.size();
if(verts_size) {
float3 *verts_ptr = &verts[0];
for(size_t i = 0; i < verts_size; i++) {
float3 p = verts_ptr[i];
tri_verts[i] = make_float4(p.x, p.y, p.z, 0.0f);
}
}
size_t triangles_size = triangles.size();
if(triangles_size) {
Triangle *triangles_ptr = &triangles[0];
for(size_t i = 0; i < triangles_size; i++) {
Triangle t = triangles_ptr[i];
tri_vindex[i] = make_float4(
__int_as_float(t.v[0] + vert_offset),
__int_as_float(t.v[1] + vert_offset),
__int_as_float(t.v[2] + vert_offset),
0);
}
}
}
void Mesh::pack_curves(Scene *scene, float4 *curve_key_co, float4 *curve_data, size_t curvekey_offset)
{
size_t curve_keys_size = curve_keys.size();
CurveKey *keys_ptr = NULL;
/* pack curve keys */
if(curve_keys_size) {
keys_ptr = &curve_keys[0];
for(size_t i = 0; i < curve_keys_size; i++) {
float3 p = keys_ptr[i].co;
float radius = keys_ptr[i].radius;
curve_key_co[i] = make_float4(p.x, p.y, p.z, radius);
}
}
/* pack curve segments */
size_t curve_num = curves.size();
if(curve_num) {
Curve *curve_ptr = &curves[0];
int shader_id = 0;
for(size_t i = 0; i < curve_num; i++) {
Curve curve = curve_ptr[i];
shader_id = scene->shader_manager->get_shader_id(curve.shader, this, false);
curve_data[i] = make_float4(
__int_as_float(curve.first_key + curvekey_offset),
__int_as_float(curve.num_keys),
__int_as_float(shader_id),
0.0f);
}
}
}
void Mesh::compute_bvh(SceneParams *params, Progress *progress, int n, int total)
{
if(progress->get_cancel())
return;
compute_bounds();
if(!transform_applied) {
string msg = "Updating Mesh BVH ";
if(name == "")
msg += string_printf("%u/%u", (uint)(n+1), (uint)total);
else
msg += string_printf("%s %u/%u", name.c_str(), (uint)(n+1), (uint)total);
Object object;
object.mesh = this;
vector<Object*> objects;
objects.push_back(&object);
if(bvh && !need_update_rebuild) {
progress->set_status(msg, "Refitting BVH");
bvh->objects = objects;
bvh->refit(*progress);
}
else {
progress->set_status(msg, "Building BVH");
BVHParams bparams;
bparams.use_cache = params->use_bvh_cache;
bparams.use_spatial_split = params->use_bvh_spatial_split;
bparams.use_qbvh = params->use_qbvh;
delete bvh;
bvh = BVH::create(bparams, objects);
bvh->build(*progress);
}
}
need_update = false;
need_update_rebuild = false;
}
void Mesh::tag_update(Scene *scene, bool rebuild)
{
need_update = true;
if(rebuild) {
need_update_rebuild = true;
scene->light_manager->need_update = true;
}
else {
foreach(uint sindex, used_shaders)
if(scene->shaders[sindex]->has_surface_emission)
scene->light_manager->need_update = true;
}
scene->mesh_manager->need_update = true;
scene->object_manager->need_update = true;
}
/* Mesh Manager */
MeshManager::MeshManager()
{
bvh = NULL;
need_update = true;
}
MeshManager::~MeshManager()
{
delete bvh;
}
void MeshManager::update_osl_attributes(Device *device, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
{
#ifdef WITH_OSL
/* for OSL, a hash map is used to lookup the attribute by name. */
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
og->attribute_map.resize(scene->objects.size()*ATTR_PRIM_TYPES);
for(size_t i = 0; i < scene->objects.size(); i++) {
/* set object name to object index map */
Object *object = scene->objects[i];
og->object_name_map[object->name] = i;
og->object_names.push_back(object->name);
/* set object attributes */
foreach(ParamValue& attr, object->attributes) {
OSLGlobals::Attribute osl_attr;
osl_attr.type = attr.type();
osl_attr.elem = ATTR_ELEMENT_VALUE;
osl_attr.value = attr;
og->attribute_map[i*ATTR_PRIM_TYPES][attr.name()] = osl_attr;
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][attr.name()] = osl_attr;
}
/* find mesh attributes */
size_t j;
for(j = 0; j < scene->meshes.size(); j++)
if(scene->meshes[j] == object->mesh)
break;
AttributeRequestSet& attributes = mesh_attributes[j];
/* set object attributes */
foreach(AttributeRequest& req, attributes.requests) {
OSLGlobals::Attribute osl_attr;
if(req.triangle_element != ATTR_ELEMENT_NONE) {
osl_attr.elem = req.triangle_element;
osl_attr.offset = req.triangle_offset;
if(req.triangle_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else
osl_attr.type = TypeDesc::TypeColor;
if(req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i*ATTR_PRIM_TYPES][stdname] = osl_attr;
}
else if(req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i*ATTR_PRIM_TYPES][req.name] = osl_attr;
}
}
if(req.curve_element != ATTR_ELEMENT_NONE) {
osl_attr.elem = req.curve_element;
osl_attr.offset = req.curve_offset;
if(req.curve_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else
osl_attr.type = TypeDesc::TypeColor;
if(req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][stdname] = osl_attr;
}
else if(req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][req.name] = osl_attr;
}
}
}
}
#endif
}
void MeshManager::update_svm_attributes(Device *device, DeviceScene *dscene, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
{
/* for SVM, the attributes_map table is used to lookup the offset of an
* attribute, based on a unique shader attribute id. */
/* compute array stride */
int attr_map_stride = 0;
for(size_t i = 0; i < scene->meshes.size(); i++)
attr_map_stride = max(attr_map_stride, (mesh_attributes[i].size() + 1)*ATTR_PRIM_TYPES);
if(attr_map_stride == 0)
return;
/* create attribute map */
uint4 *attr_map = dscene->attributes_map.resize(attr_map_stride*scene->objects.size());
memset(attr_map, 0, dscene->attributes_map.size()*sizeof(uint));
for(size_t i = 0; i < scene->objects.size(); i++) {
Object *object = scene->objects[i];
Mesh *mesh = object->mesh;
/* find mesh attributes */
size_t j;
for(j = 0; j < scene->meshes.size(); j++)
if(scene->meshes[j] == mesh)
break;
AttributeRequestSet& attributes = mesh_attributes[j];
/* set object attributes */
int index = i*attr_map_stride;
foreach(AttributeRequest& req, attributes.requests) {
uint id;
if(req.std == ATTR_STD_NONE)
id = scene->shader_manager->get_attribute_id(req.name);
else
id = scene->shader_manager->get_attribute_id(req.std);
if(mesh->triangles.size()) {
attr_map[index].x = id;
attr_map[index].y = req.triangle_element;
attr_map[index].z = as_uint(req.triangle_offset);
if(req.triangle_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
}
index++;
if(mesh->curves.size()) {
attr_map[index].x = id;
attr_map[index].y = req.curve_element;
attr_map[index].z = as_uint(req.curve_offset);
if(req.curve_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
}
index++;
}
/* terminator */
attr_map[index].x = ATTR_STD_NONE;
attr_map[index].y = 0;
attr_map[index].z = 0;
attr_map[index].w = 0;
index++;
attr_map[index].x = ATTR_STD_NONE;
attr_map[index].y = 0;
attr_map[index].z = 0;
attr_map[index].w = 0;
index++;
}
/* copy to device */
dscene->data.bvh.attributes_map_stride = attr_map_stride;
device->tex_alloc("__attributes_map", dscene->attributes_map);
}
static void update_attribute_element_offset(Mesh *mesh, vector<float>& attr_float, vector<float4>& attr_float3,
Attribute *mattr, TypeDesc& type, int& offset, AttributeElement& element)
{
if(mattr) {
/* store element and type */
element = mattr->element;
type = mattr->type;
/* store attribute data in arrays */
size_t size = mattr->element_size(
mesh->verts.size(),
mesh->triangles.size(),
mesh->curves.size(),
mesh->curve_keys.size());
if(mattr->type == TypeDesc::TypeFloat) {
float *data = mattr->data_float();
offset = attr_float.size();
attr_float.resize(attr_float.size() + size);
for(size_t k = 0; k < size; k++)
attr_float[offset+k] = data[k];
}
else {
float3 *data = mattr->data_float3();
offset = attr_float3.size();
attr_float3.resize(attr_float3.size() + size);
for(size_t k = 0; k < size; k++)
attr_float3[offset+k] = float3_to_float4(data[k]);
}
/* mesh vertex/curve index is global, not per object, so we sneak
* a correction for that in here */
if(element == ATTR_ELEMENT_VERTEX)
offset -= mesh->vert_offset;
else if(element == ATTR_ELEMENT_FACE)
offset -= mesh->tri_offset;
else if(element == ATTR_ELEMENT_CORNER)
offset -= 3*mesh->tri_offset;
else if(element == ATTR_ELEMENT_CURVE)
offset -= mesh->curve_offset;
else if(element == ATTR_ELEMENT_CURVE_KEY)
offset -= mesh->curvekey_offset;
}
else {
/* attribute not found */
element = ATTR_ELEMENT_NONE;
offset = 0;
}
}
void MeshManager::device_update_attributes(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
progress.set_status("Updating Mesh", "Computing attributes");
/* gather per mesh requested attributes. as meshes may have multiple
* shaders assigned, this merges the requested attributes that have
* been set per shader by the shader manager */
vector<AttributeRequestSet> mesh_attributes(scene->meshes.size());
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
scene->need_global_attributes(mesh_attributes[i]);
foreach(uint sindex, mesh->used_shaders) {
Shader *shader = scene->shaders[sindex];
mesh_attributes[i].add(shader->attributes);
}
}
/* mesh attribute are stored in a single array per data type. here we fill
* those arrays, and set the offset and element type to create attribute
* maps next */
vector<float> attr_float;
vector<float4> attr_float3;
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet& attributes = mesh_attributes[i];
/* todo: we now store std and name attributes from requests even if
2012-06-09 17:22:52 +00:00
* they actually refer to the same mesh attributes, optimize */
foreach(AttributeRequest& req, attributes.requests) {
Attribute *triangle_mattr = mesh->attributes.find(req);
Attribute *curve_mattr = mesh->curve_attributes.find(req);
/* todo: get rid of this exception, it's only here for giving some
* working texture coordinate for subdivision as we can't preserve
* any attributes yet */
if(!triangle_mattr && req.std == ATTR_STD_GENERATED) {
triangle_mattr = mesh->attributes.add(ATTR_STD_GENERATED);
if(mesh->verts.size())
memcpy(triangle_mattr->data_float3(), &mesh->verts[0], sizeof(float3)*mesh->verts.size());
}
update_attribute_element_offset(mesh, attr_float, attr_float3, triangle_mattr,
req.triangle_type, req.triangle_offset, req.triangle_element);
update_attribute_element_offset(mesh, attr_float, attr_float3, curve_mattr,
req.curve_type, req.curve_offset, req.curve_element);
if(progress.get_cancel()) return;
}
}
/* create attribute lookup maps */
if(scene->shader_manager->use_osl())
update_osl_attributes(device, scene, mesh_attributes);
else
update_svm_attributes(device, dscene, scene, mesh_attributes);
if(progress.get_cancel()) return;
/* copy to device */
progress.set_status("Updating Mesh", "Copying Attributes to device");
if(attr_float.size()) {
dscene->attributes_float.copy(&attr_float[0], attr_float.size());
device->tex_alloc("__attributes_float", dscene->attributes_float);
}
if(attr_float3.size()) {
dscene->attributes_float3.copy(&attr_float3[0], attr_float3.size());
device->tex_alloc("__attributes_float3", dscene->attributes_float3);
}
}
void MeshManager::device_update_mesh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
/* count and update offsets */
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_key_size = 0;
size_t curve_size = 0;
foreach(Mesh *mesh, scene->meshes) {
mesh->vert_offset = vert_size;
mesh->tri_offset = tri_size;
mesh->curvekey_offset = curve_key_size;
mesh->curve_offset = curve_size;
vert_size += mesh->verts.size();
tri_size += mesh->triangles.size();
curve_key_size += mesh->curve_keys.size();
curve_size += mesh->curves.size();
}
if(tri_size != 0) {
/* normals */
progress.set_status("Updating Mesh", "Computing normals");
float4 *normal = dscene->tri_normal.resize(tri_size);
float4 *vnormal = dscene->tri_vnormal.resize(vert_size);
float4 *tri_verts = dscene->tri_verts.resize(vert_size);
float4 *tri_vindex = dscene->tri_vindex.resize(tri_size);
foreach(Mesh *mesh, scene->meshes) {
mesh->pack_normals(scene, &normal[mesh->tri_offset], &vnormal[mesh->vert_offset]);
mesh->pack_verts(&tri_verts[mesh->vert_offset], &tri_vindex[mesh->tri_offset], mesh->vert_offset);
if(progress.get_cancel()) return;
}
/* vertex coordinates */
progress.set_status("Updating Mesh", "Copying Mesh to device");
device->tex_alloc("__tri_normal", dscene->tri_normal);
device->tex_alloc("__tri_vnormal", dscene->tri_vnormal);
device->tex_alloc("__tri_verts", dscene->tri_verts);
device->tex_alloc("__tri_vindex", dscene->tri_vindex);
}
if(curve_size != 0) {
progress.set_status("Updating Mesh", "Copying Strands to device");
float4 *curve_keys = dscene->curve_keys.resize(curve_key_size);
float4 *curves = dscene->curves.resize(curve_size);
foreach(Mesh *mesh, scene->meshes) {
mesh->pack_curves(scene, &curve_keys[mesh->curvekey_offset], &curves[mesh->curve_offset], mesh->curvekey_offset);
if(progress.get_cancel()) return;
}
device->tex_alloc("__curve_keys", dscene->curve_keys);
device->tex_alloc("__curves", dscene->curves);
}
}
void MeshManager::device_update_bvh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
/* bvh build */
progress.set_status("Updating Scene BVH", "Building");
BVHParams bparams;
bparams.top_level = true;
bparams.use_qbvh = scene->params.use_qbvh;
bparams.use_spatial_split = scene->params.use_bvh_spatial_split;
bparams.use_cache = scene->params.use_bvh_cache;
delete bvh;
bvh = BVH::create(bparams, scene->objects);
bvh->build(progress);
if(progress.get_cancel()) return;
/* copy to device */
progress.set_status("Updating Scene BVH", "Copying BVH to device");
PackedBVH& pack = bvh->pack;
if(pack.nodes.size()) {
dscene->bvh_nodes.reference((float4*)&pack.nodes[0], pack.nodes.size());
device->tex_alloc("__bvh_nodes", dscene->bvh_nodes);
}
if(pack.object_node.size()) {
dscene->object_node.reference((uint*)&pack.object_node[0], pack.object_node.size());
device->tex_alloc("__object_node", dscene->object_node);
}
if(pack.tri_woop.size()) {
dscene->tri_woop.reference(&pack.tri_woop[0], pack.tri_woop.size());
device->tex_alloc("__tri_woop", dscene->tri_woop);
}
if(pack.prim_segment.size()) {
dscene->prim_segment.reference((uint*)&pack.prim_segment[0], pack.prim_segment.size());
device->tex_alloc("__prim_segment", dscene->prim_segment);
}
if(pack.prim_visibility.size()) {
dscene->prim_visibility.reference((uint*)&pack.prim_visibility[0], pack.prim_visibility.size());
device->tex_alloc("__prim_visibility", dscene->prim_visibility);
}
if(pack.prim_index.size()) {
dscene->prim_index.reference((uint*)&pack.prim_index[0], pack.prim_index.size());
device->tex_alloc("__prim_index", dscene->prim_index);
}
if(pack.prim_object.size()) {
dscene->prim_object.reference((uint*)&pack.prim_object[0], pack.prim_object.size());
device->tex_alloc("__prim_object", dscene->prim_object);
}
dscene->data.bvh.root = pack.root_index;
}
void MeshManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
if(!need_update)
return;
/* update normals */
foreach(Mesh *mesh, scene->meshes) {
foreach(uint shader, mesh->used_shaders)
if(scene->shaders[shader]->need_update_attributes)
mesh->need_update = true;
if(mesh->need_update) {
mesh->add_face_normals();
mesh->add_vertex_normals();
if(progress.get_cancel()) return;
}
}
/* device update */
device_free(device, dscene);
device_update_mesh(device, dscene, scene, progress);
if(progress.get_cancel()) return;
device_update_attributes(device, dscene, scene, progress);
if(progress.get_cancel()) return;
/* update displacement */
bool displacement_done = false;
foreach(Mesh *mesh, scene->meshes)
if(mesh->need_update && displace(device, scene, mesh, progress))
displacement_done = true;
/* todo: properly handle cancel halfway displacement */
if(progress.get_cancel()) return;
/* device re-update after displacement */
if(displacement_done) {
device_free(device, dscene);
device_update_mesh(device, dscene, scene, progress);
if(progress.get_cancel()) return;
device_update_attributes(device, dscene, scene, progress);
if(progress.get_cancel()) return;
}
/* update bvh */
size_t i = 0, num_bvh = 0;
foreach(Mesh *mesh, scene->meshes)
if(mesh->need_update && !mesh->transform_applied)
num_bvh++;
TaskPool pool;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update) {
pool.push(function_bind(&Mesh::compute_bvh, mesh, &scene->params, &progress, i, num_bvh));
i++;
}
}
pool.wait_work();
foreach(Shader *shader, scene->shaders)
shader->need_update_attributes = false;
float shuttertime = scene->camera->shuttertime;
#ifdef __OBJECT_MOTION__
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
bool motion_blur = need_motion == Scene::MOTION_BLUR;
#else
bool motion_blur = false;
#endif
foreach(Object *object, scene->objects)
object->compute_bounds(motion_blur, shuttertime);
if(progress.get_cancel()) return;
device_update_bvh(device, dscene, scene, progress);
need_update = false;
}
void MeshManager::device_free(Device *device, DeviceScene *dscene)
{
device->tex_free(dscene->bvh_nodes);
device->tex_free(dscene->object_node);
device->tex_free(dscene->tri_woop);
device->tex_free(dscene->prim_segment);
device->tex_free(dscene->prim_visibility);
device->tex_free(dscene->prim_index);
device->tex_free(dscene->prim_object);
device->tex_free(dscene->tri_normal);
device->tex_free(dscene->tri_vnormal);
device->tex_free(dscene->tri_vindex);
device->tex_free(dscene->tri_verts);
device->tex_free(dscene->curves);
device->tex_free(dscene->curve_keys);
device->tex_free(dscene->attributes_map);
device->tex_free(dscene->attributes_float);
device->tex_free(dscene->attributes_float3);
dscene->bvh_nodes.clear();
dscene->object_node.clear();
dscene->tri_woop.clear();
dscene->prim_segment.clear();
dscene->prim_visibility.clear();
dscene->prim_index.clear();
dscene->prim_object.clear();
dscene->tri_normal.clear();
dscene->tri_vnormal.clear();
dscene->tri_vindex.clear();
dscene->tri_verts.clear();
dscene->curves.clear();
dscene->curve_keys.clear();
dscene->attributes_map.clear();
dscene->attributes_float.clear();
dscene->attributes_float3.clear();
#ifdef WITH_OSL
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
if(og) {
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
}
#endif
}
void MeshManager::tag_update(Scene *scene)
{
need_update = true;
scene->object_manager->need_update = true;
}
bool Mesh::need_attribute(Scene *scene, AttributeStandard std)
{
if(std == ATTR_STD_NONE)
return false;
if(scene->need_global_attribute(std))
return true;
foreach(uint shader, used_shaders)
if(scene->shaders[shader]->attributes.find(std))
return true;
return false;
}
bool Mesh::need_attribute(Scene *scene, ustring name)
{
if(name == ustring())
return false;
foreach(uint shader, used_shaders)
if(scene->shaders[shader]->attributes.find(name))
return true;
return false;
}
CCL_NAMESPACE_END