blender/source/gameengine/Rasterizer/RAS_OpenGLRasterizer/RAS_ListRasterizer.cpp

283 lines
5.5 KiB
C++
Raw Normal View History

//
#include <iostream>
#include "RAS_ListRasterizer.h"
#ifdef WIN32
#include <windows.h>
#endif // WIN32
Merge of apricot branch game engine changes into trunk, excluding GLSL. GLEW ==== Added the GLEW opengl extension library into extern/, always compiled into Blender now. This is much nicer than doing this kind of extension management manually, and will be used in the game engine, for GLSL, and other opengl extensions. * According to the GLEW website it works on Windows, Linux, Mac OS X, FreeBSD, Irix, and Solaris. There might still be platform specific issues due to this commit, so let me know and I'll look into it. * This means also that all extensions will now always be compiled in, regardless of the glext.h on the platform where compilation happens. Game Engine =========== Refactoring of the use of opengl extensions and other drawing code in the game engine, and cleaning up some hacks related to GLSL integration. These changes will be merged into trunk too after this. The game engine graphics demos & apricot level survived my tests, but this could use some good testing of course. For users: please test with the options "Generate Display Lists" and "Vertex Arrays" enabled, these should be the fastest and are supposed to be "unreliable", but if that's the case that's probably due to bugs that can be fixed. * The game engine now also uses GLEW for extensions, replacing the custom opengl extensions code that was there. Removes a lot of #ifdef's, but the runtime checks stay of course. * Removed the WITHOUT_GLEXT environment variable. This was added to work around a specific bug and only disabled multitexturing anyway. It might also have caused a slowdown since it was retrieving the environment variable for every vertex in immediate mode (bug #13680). * Refactored the code to allow drawing skinned meshes with vertex arrays too, removing some specific immediate mode drawing functions for this that only did extra normal calculation. Now it always splits vertices of flat faces instead. * Refactored normal recalculation with some minor optimizations, required for the above change. * Removed some outdated code behind the __NLA_OLDDEFORM #ifdef. * Fixed various bugs in setting of multitexture coordinates and vertex attributes for vertex arrays. These were not being enabled/disabled correct according to the opengl spec, leading to crashes. Also tangent attributes used an immediate mode call for vertex arrays, which can't work. * Fixed use of uninitialized variable in RAS_TexVert. * Exporting skinned meshes was doing O(n^2) lookups for vertices and deform weights, now uses same trick as regular meshes.
2008-06-17 10:27:34 +00:00
#include "GL/glew.h"
#include "RAS_TexVert.h"
#include "MT_assert.h"
//#ifndef NDEBUG
//#ifdef WIN32
//#define spit(x) std::cout << x << std::endl;
//#endif //WIN32
//#else
#define spit(x)
//#endif
RAS_ListSlot::RAS_ListSlot(RAS_ListRasterizer* rasty)
: KX_ListSlot(),
m_list(0),
Merge of apricot branch game engine changes into trunk, excluding GLSL. GLEW ==== Added the GLEW opengl extension library into extern/, always compiled into Blender now. This is much nicer than doing this kind of extension management manually, and will be used in the game engine, for GLSL, and other opengl extensions. * According to the GLEW website it works on Windows, Linux, Mac OS X, FreeBSD, Irix, and Solaris. There might still be platform specific issues due to this commit, so let me know and I'll look into it. * This means also that all extensions will now always be compiled in, regardless of the glext.h on the platform where compilation happens. Game Engine =========== Refactoring of the use of opengl extensions and other drawing code in the game engine, and cleaning up some hacks related to GLSL integration. These changes will be merged into trunk too after this. The game engine graphics demos & apricot level survived my tests, but this could use some good testing of course. For users: please test with the options "Generate Display Lists" and "Vertex Arrays" enabled, these should be the fastest and are supposed to be "unreliable", but if that's the case that's probably due to bugs that can be fixed. * The game engine now also uses GLEW for extensions, replacing the custom opengl extensions code that was there. Removes a lot of #ifdef's, but the runtime checks stay of course. * Removed the WITHOUT_GLEXT environment variable. This was added to work around a specific bug and only disabled multitexturing anyway. It might also have caused a slowdown since it was retrieving the environment variable for every vertex in immediate mode (bug #13680). * Refactored the code to allow drawing skinned meshes with vertex arrays too, removing some specific immediate mode drawing functions for this that only did extra normal calculation. Now it always splits vertices of flat faces instead. * Refactored normal recalculation with some minor optimizations, required for the above change. * Removed some outdated code behind the __NLA_OLDDEFORM #ifdef. * Fixed various bugs in setting of multitexture coordinates and vertex attributes for vertex arrays. These were not being enabled/disabled correct according to the opengl spec, leading to crashes. Also tangent attributes used an immediate mode call for vertex arrays, which can't work. * Fixed use of uninitialized variable in RAS_TexVert. * Exporting skinned meshes was doing O(n^2) lookups for vertices and deform weights, now uses same trick as regular meshes.
2008-06-17 10:27:34 +00:00
m_flag(LIST_MODIFY|LIST_CREATE),
m_rasty(rasty)
{
}
int RAS_ListSlot::Release()
{
if (--m_refcount > 0)
return m_refcount;
m_rasty->RemoveListSlot(this);
delete this;
return 0;
}
RAS_ListSlot::~RAS_ListSlot()
{
RemoveList();
}
void RAS_ListSlot::RemoveList()
{
if(m_list != 0) {
spit("Releasing display list (" << m_list << ")");
glDeleteLists((GLuint)m_list, 1);
m_list =0;
}
}
void RAS_ListSlot::DrawList()
{
if(m_flag &LIST_STREAM || m_flag& LIST_NOCREATE) {
RemoveList();
return;
}
if(m_flag &LIST_MODIFY) {
if(m_flag &LIST_CREATE) {
if(m_list == 0) {
m_list = (unsigned int)glGenLists(1);
m_flag = m_flag &~ LIST_CREATE;
spit("Created display list (" << m_list << ")");
}
}
if(m_list != 0)
glNewList((GLuint)m_list, GL_COMPILE);
m_flag |= LIST_BEGIN;
return;
}
glCallList(m_list);
}
void RAS_ListSlot::EndList()
{
if(m_flag & LIST_BEGIN) {
glEndList();
m_flag = m_flag &~(LIST_BEGIN|LIST_MODIFY);
m_flag |= LIST_END;
glCallList(m_list);
}
}
void RAS_ListSlot::SetModified(bool mod)
{
if(mod && !(m_flag & LIST_MODIFY)) {
spit("Modifying list (" << m_list << ")");
m_flag = m_flag &~ LIST_END;
m_flag |= LIST_STREAM;
}
}
bool RAS_ListSlot::End()
{
return (m_flag &LIST_END)!=0;
}
RAS_ListRasterizer::RAS_ListRasterizer(RAS_ICanvas* canvas, bool useVertexArrays, bool lock)
: RAS_VAOpenGLRasterizer(canvas, lock),
mUseVertexArrays(useVertexArrays)
{
// --
}
RAS_ListRasterizer::~RAS_ListRasterizer()
{
ReleaseAlloc();
}
void RAS_ListRasterizer::RemoveListSlot(RAS_ListSlot* list)
{
RAS_Lists::iterator it = mLists.begin();
while(it != mLists.end()) {
if (it->second == list) {
mLists.erase(it);
break;
}
it++;
}
}
RAS_ListSlot* RAS_ListRasterizer::FindOrAdd(const vecVertexArray& vertexarrays, KX_ListSlot** slot)
{
/*
Keep a copy of constant lists submitted for rendering,
this guards against (replicated)new...delete every frame,
and we can reuse lists!
:: sorted by vertex array
*/
RAS_ListSlot* localSlot = (RAS_ListSlot*)*slot;
if(!localSlot) {
RAS_Lists::iterator it = mLists.find(vertexarrays);
if(it == mLists.end()) {
localSlot = new RAS_ListSlot(this);
mLists.insert(std::pair<vecVertexArray, RAS_ListSlot*>(vertexarrays, localSlot));
} else {
localSlot = static_cast<RAS_ListSlot*>(it->second->AddRef());
}
}
MT_assert(localSlot);
return localSlot;
}
void RAS_ListRasterizer::ReleaseAlloc()
{
RAS_Lists::iterator it = mLists.begin();
while(it != mLists.end()) {
delete it->second;
it++;
}
mLists.clear();
}
void RAS_ListRasterizer::IndexPrimitives(
const vecVertexArray & vertexarrays,
const vecIndexArrays & indexarrays,
int mode,
class RAS_IPolyMaterial* polymat,
class RAS_IRenderTools* rendertools,
bool useObjectColor,
const MT_Vector4& rgbacolor,
class KX_ListSlot** slot)
{
RAS_ListSlot* localSlot =0;
// useObjectColor(are we updating every frame?)
Merge of apricot branch game engine changes into trunk, excluding GLSL. GLEW ==== Added the GLEW opengl extension library into extern/, always compiled into Blender now. This is much nicer than doing this kind of extension management manually, and will be used in the game engine, for GLSL, and other opengl extensions. * According to the GLEW website it works on Windows, Linux, Mac OS X, FreeBSD, Irix, and Solaris. There might still be platform specific issues due to this commit, so let me know and I'll look into it. * This means also that all extensions will now always be compiled in, regardless of the glext.h on the platform where compilation happens. Game Engine =========== Refactoring of the use of opengl extensions and other drawing code in the game engine, and cleaning up some hacks related to GLSL integration. These changes will be merged into trunk too after this. The game engine graphics demos & apricot level survived my tests, but this could use some good testing of course. For users: please test with the options "Generate Display Lists" and "Vertex Arrays" enabled, these should be the fastest and are supposed to be "unreliable", but if that's the case that's probably due to bugs that can be fixed. * The game engine now also uses GLEW for extensions, replacing the custom opengl extensions code that was there. Removes a lot of #ifdef's, but the runtime checks stay of course. * Removed the WITHOUT_GLEXT environment variable. This was added to work around a specific bug and only disabled multitexturing anyway. It might also have caused a slowdown since it was retrieving the environment variable for every vertex in immediate mode (bug #13680). * Refactored the code to allow drawing skinned meshes with vertex arrays too, removing some specific immediate mode drawing functions for this that only did extra normal calculation. Now it always splits vertices of flat faces instead. * Refactored normal recalculation with some minor optimizations, required for the above change. * Removed some outdated code behind the __NLA_OLDDEFORM #ifdef. * Fixed various bugs in setting of multitexture coordinates and vertex attributes for vertex arrays. These were not being enabled/disabled correct according to the opengl spec, leading to crashes. Also tangent attributes used an immediate mode call for vertex arrays, which can't work. * Fixed use of uninitialized variable in RAS_TexVert. * Exporting skinned meshes was doing O(n^2) lookups for vertices and deform weights, now uses same trick as regular meshes.
2008-06-17 10:27:34 +00:00
if(!useObjectColor && slot) {
localSlot = FindOrAdd(vertexarrays, slot);
localSlot->DrawList();
if(localSlot->End()) {
// save slot here too, needed for replicas and object using same mesh
// => they have the same vertexarray but different mesh slot
*slot = localSlot;
return;
}
}
if (mUseVertexArrays) {
RAS_VAOpenGLRasterizer::IndexPrimitives(
vertexarrays, indexarrays,
mode, polymat,
rendertools, useObjectColor,
rgbacolor,slot
);
} else {
RAS_OpenGLRasterizer::IndexPrimitives(
vertexarrays, indexarrays,
mode, polymat,
rendertools, useObjectColor,
rgbacolor,slot
);
}
Merge of apricot branch game engine changes into trunk, excluding GLSL. GLEW ==== Added the GLEW opengl extension library into extern/, always compiled into Blender now. This is much nicer than doing this kind of extension management manually, and will be used in the game engine, for GLSL, and other opengl extensions. * According to the GLEW website it works on Windows, Linux, Mac OS X, FreeBSD, Irix, and Solaris. There might still be platform specific issues due to this commit, so let me know and I'll look into it. * This means also that all extensions will now always be compiled in, regardless of the glext.h on the platform where compilation happens. Game Engine =========== Refactoring of the use of opengl extensions and other drawing code in the game engine, and cleaning up some hacks related to GLSL integration. These changes will be merged into trunk too after this. The game engine graphics demos & apricot level survived my tests, but this could use some good testing of course. For users: please test with the options "Generate Display Lists" and "Vertex Arrays" enabled, these should be the fastest and are supposed to be "unreliable", but if that's the case that's probably due to bugs that can be fixed. * The game engine now also uses GLEW for extensions, replacing the custom opengl extensions code that was there. Removes a lot of #ifdef's, but the runtime checks stay of course. * Removed the WITHOUT_GLEXT environment variable. This was added to work around a specific bug and only disabled multitexturing anyway. It might also have caused a slowdown since it was retrieving the environment variable for every vertex in immediate mode (bug #13680). * Refactored the code to allow drawing skinned meshes with vertex arrays too, removing some specific immediate mode drawing functions for this that only did extra normal calculation. Now it always splits vertices of flat faces instead. * Refactored normal recalculation with some minor optimizations, required for the above change. * Removed some outdated code behind the __NLA_OLDDEFORM #ifdef. * Fixed various bugs in setting of multitexture coordinates and vertex attributes for vertex arrays. These were not being enabled/disabled correct according to the opengl spec, leading to crashes. Also tangent attributes used an immediate mode call for vertex arrays, which can't work. * Fixed use of uninitialized variable in RAS_TexVert. * Exporting skinned meshes was doing O(n^2) lookups for vertices and deform weights, now uses same trick as regular meshes.
2008-06-17 10:27:34 +00:00
if(!useObjectColor && slot) {
localSlot->EndList();
*slot = localSlot;
}
}
void RAS_ListRasterizer::IndexPrimitivesMulti(
const vecVertexArray& vertexarrays,
const vecIndexArrays & indexarrays,
int mode,
class RAS_IPolyMaterial* polymat,
class RAS_IRenderTools* rendertools,
bool useObjectColor,
const MT_Vector4& rgbacolor,
class KX_ListSlot** slot)
{
RAS_ListSlot* localSlot =0;
// useObjectColor(are we updating every frame?)
Merge of apricot branch game engine changes into trunk, excluding GLSL. GLEW ==== Added the GLEW opengl extension library into extern/, always compiled into Blender now. This is much nicer than doing this kind of extension management manually, and will be used in the game engine, for GLSL, and other opengl extensions. * According to the GLEW website it works on Windows, Linux, Mac OS X, FreeBSD, Irix, and Solaris. There might still be platform specific issues due to this commit, so let me know and I'll look into it. * This means also that all extensions will now always be compiled in, regardless of the glext.h on the platform where compilation happens. Game Engine =========== Refactoring of the use of opengl extensions and other drawing code in the game engine, and cleaning up some hacks related to GLSL integration. These changes will be merged into trunk too after this. The game engine graphics demos & apricot level survived my tests, but this could use some good testing of course. For users: please test with the options "Generate Display Lists" and "Vertex Arrays" enabled, these should be the fastest and are supposed to be "unreliable", but if that's the case that's probably due to bugs that can be fixed. * The game engine now also uses GLEW for extensions, replacing the custom opengl extensions code that was there. Removes a lot of #ifdef's, but the runtime checks stay of course. * Removed the WITHOUT_GLEXT environment variable. This was added to work around a specific bug and only disabled multitexturing anyway. It might also have caused a slowdown since it was retrieving the environment variable for every vertex in immediate mode (bug #13680). * Refactored the code to allow drawing skinned meshes with vertex arrays too, removing some specific immediate mode drawing functions for this that only did extra normal calculation. Now it always splits vertices of flat faces instead. * Refactored normal recalculation with some minor optimizations, required for the above change. * Removed some outdated code behind the __NLA_OLDDEFORM #ifdef. * Fixed various bugs in setting of multitexture coordinates and vertex attributes for vertex arrays. These were not being enabled/disabled correct according to the opengl spec, leading to crashes. Also tangent attributes used an immediate mode call for vertex arrays, which can't work. * Fixed use of uninitialized variable in RAS_TexVert. * Exporting skinned meshes was doing O(n^2) lookups for vertices and deform weights, now uses same trick as regular meshes.
2008-06-17 10:27:34 +00:00
if(!useObjectColor && slot) {
localSlot = FindOrAdd(vertexarrays, slot);
localSlot->DrawList();
if(localSlot->End()) {
// save slot here too, needed for replicas and object using same mesh
// => they have the same vertexarray but different mesh slot
*slot = localSlot;
return;
}
}
if (mUseVertexArrays) {
RAS_VAOpenGLRasterizer::IndexPrimitivesMulti(
vertexarrays, indexarrays,
mode, polymat,
rendertools, useObjectColor,
rgbacolor,slot
);
} else {
RAS_OpenGLRasterizer::IndexPrimitivesMulti(
vertexarrays, indexarrays,
mode, polymat,
rendertools, useObjectColor,
rgbacolor,slot
);
}
Merge of apricot branch game engine changes into trunk, excluding GLSL. GLEW ==== Added the GLEW opengl extension library into extern/, always compiled into Blender now. This is much nicer than doing this kind of extension management manually, and will be used in the game engine, for GLSL, and other opengl extensions. * According to the GLEW website it works on Windows, Linux, Mac OS X, FreeBSD, Irix, and Solaris. There might still be platform specific issues due to this commit, so let me know and I'll look into it. * This means also that all extensions will now always be compiled in, regardless of the glext.h on the platform where compilation happens. Game Engine =========== Refactoring of the use of opengl extensions and other drawing code in the game engine, and cleaning up some hacks related to GLSL integration. These changes will be merged into trunk too after this. The game engine graphics demos & apricot level survived my tests, but this could use some good testing of course. For users: please test with the options "Generate Display Lists" and "Vertex Arrays" enabled, these should be the fastest and are supposed to be "unreliable", but if that's the case that's probably due to bugs that can be fixed. * The game engine now also uses GLEW for extensions, replacing the custom opengl extensions code that was there. Removes a lot of #ifdef's, but the runtime checks stay of course. * Removed the WITHOUT_GLEXT environment variable. This was added to work around a specific bug and only disabled multitexturing anyway. It might also have caused a slowdown since it was retrieving the environment variable for every vertex in immediate mode (bug #13680). * Refactored the code to allow drawing skinned meshes with vertex arrays too, removing some specific immediate mode drawing functions for this that only did extra normal calculation. Now it always splits vertices of flat faces instead. * Refactored normal recalculation with some minor optimizations, required for the above change. * Removed some outdated code behind the __NLA_OLDDEFORM #ifdef. * Fixed various bugs in setting of multitexture coordinates and vertex attributes for vertex arrays. These were not being enabled/disabled correct according to the opengl spec, leading to crashes. Also tangent attributes used an immediate mode call for vertex arrays, which can't work. * Fixed use of uninitialized variable in RAS_TexVert. * Exporting skinned meshes was doing O(n^2) lookups for vertices and deform weights, now uses same trick as regular meshes.
2008-06-17 10:27:34 +00:00
if(!useObjectColor && slot) {
localSlot->EndList();
*slot = localSlot;
}
}
bool RAS_ListRasterizer::Init(void)
{
if (mUseVertexArrays) {
return RAS_VAOpenGLRasterizer::Init();
} else {
return RAS_OpenGLRasterizer::Init();
}
}
void RAS_ListRasterizer::SetDrawingMode(int drawingmode)
{
if (mUseVertexArrays) {
RAS_VAOpenGLRasterizer::SetDrawingMode(drawingmode);
} else {
RAS_OpenGLRasterizer::SetDrawingMode(drawingmode);
}
}
void RAS_ListRasterizer::Exit()
{
if (mUseVertexArrays) {
RAS_VAOpenGLRasterizer::Exit();
} else {
RAS_OpenGLRasterizer::Exit();
}
}
// eof