blender/intern/cycles/render/object.cpp

396 lines
11 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "device.h"
#include "light.h"
#include "mesh.h"
#include "curves.h"
#include "object.h"
#include "scene.h"
#include "util_foreach.h"
#include "util_map.h"
#include "util_progress.h"
#include "util_vector.h"
CCL_NAMESPACE_BEGIN
/* Object */
Object::Object()
{
name = "";
mesh = NULL;
tfm = transform_identity();
visibility = ~0;
random_id = 0;
pass_id = 0;
particle_id = 0;
bounds = BoundBox::empty;
motion.pre = transform_identity();
motion.post = transform_identity();
use_motion = false;
use_holdout = false;
curverender = false;
}
Object::~Object()
{
}
void Object::compute_bounds(bool motion_blur, float shuttertime)
{
BoundBox mbounds = mesh->bounds;
if(motion_blur && use_motion) {
DecompMotionTransform decomp;
transform_motion_decompose(&decomp, &motion, &tfm);
bounds = BoundBox::empty;
/* todo: this is really terrible. according to pbrt there is a better
* way to find this iteratively, but did not find implementation yet
* or try to implement myself */
float start_t = 0.5f - shuttertime*0.25f;
float end_t = 0.5f + shuttertime*0.25f;
for(float t = start_t; t < end_t; t += (1.0f/128.0f)*shuttertime) {
Transform ttfm;
transform_motion_interpolate(&ttfm, &decomp, t);
bounds.grow(mbounds.transformed(&ttfm));
}
}
else
bounds = mbounds.transformed(&tfm);
}
void Object::apply_transform()
{
if(!mesh || tfm == transform_identity())
return;
float3 c0 = transform_get_column(&tfm, 0);
float3 c1 = transform_get_column(&tfm, 1);
float3 c2 = transform_get_column(&tfm, 2);
float scalar = pow(fabsf(dot(cross(c0, c1), c2)), 1.0f/3.0f);
for(size_t i = 0; i < mesh->verts.size(); i++)
mesh->verts[i] = transform_point(&tfm, mesh->verts[i]);
for(size_t i = 0; i < mesh->curve_keys.size(); i++) {
mesh->curve_keys[i].co = transform_point(&tfm, mesh->curve_keys[i].co);
/* scale for strand radius - only correct for uniform transforms*/
mesh->curve_keys[i].radius *= scalar;
}
/* store matrix to transform later. when accessing these as attributes we
* do not want the transform to be applied for consistency between static
* and dynamic BVH, so we do it on packing. */
mesh->transform_normal = transform_transpose(transform_inverse(tfm));
/* we keep normals pointing in same direction on negative scale, notify
* mesh about this in it (re)calculates normals */
if(transform_negative_scale(tfm))
mesh->transform_negative_scaled = true;
if(bounds.valid()) {
mesh->compute_bounds();
compute_bounds(false, 0.0f);
}
/* tfm is not reset to identity, all code that uses it needs to check the
transform_applied boolean */
}
void Object::tag_update(Scene *scene)
{
if(mesh) {
if(mesh->transform_applied)
mesh->need_update = true;
foreach(uint sindex, mesh->used_shaders) {
Shader *shader = scene->shaders[sindex];
if(shader->sample_as_light && shader->has_surface_emission)
scene->light_manager->need_update = true;
}
}
scene->curve_system_manager->need_update = true;
scene->mesh_manager->need_update = true;
scene->object_manager->need_update = true;
}
/* Object Manager */
ObjectManager::ObjectManager()
{
need_update = true;
}
ObjectManager::~ObjectManager()
{
}
void ObjectManager::device_update_transforms(Device *device, DeviceScene *dscene, Scene *scene, uint *object_flag, Progress& progress)
{
float4 *objects;
float4 *objects_vector = NULL;
int i = 0;
map<Mesh*, float> surface_area_map;
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
bool have_motion = false;
objects = dscene->objects.resize(OBJECT_SIZE*scene->objects.size());
if(need_motion == Scene::MOTION_PASS)
objects_vector = dscene->objects_vector.resize(OBJECT_VECTOR_SIZE*scene->objects.size());
foreach(Object *ob, scene->objects) {
Mesh *mesh = ob->mesh;
uint flag = 0;
/* compute transformations */
Transform tfm = ob->tfm;
Transform itfm = transform_inverse(tfm);
/* compute surface area. for uniform scale we can do avoid the many
* transform calls and share computation for instances */
/* todo: correct for displacement, and move to a better place */
float uniform_scale;
float surface_area = 0.0f;
float pass_id = ob->pass_id;
float random_number = (float)ob->random_id * (1.0f/(float)0xFFFFFFFF);
if(transform_uniform_scale(tfm, uniform_scale)) {
map<Mesh*, float>::iterator it = surface_area_map.find(mesh);
if(it == surface_area_map.end()) {
foreach(Mesh::Triangle& t, mesh->triangles) {
float3 p1 = mesh->verts[t.v[0]];
float3 p2 = mesh->verts[t.v[1]];
float3 p3 = mesh->verts[t.v[2]];
surface_area += triangle_area(p1, p2, p3);
}
foreach(Mesh::Curve& curve, mesh->curves) {
int first_key = curve.first_key;
for(int i = 0; i < curve.num_segments(); i++) {
float3 p1 = mesh->curve_keys[first_key + i].co;
float r1 = mesh->curve_keys[first_key + i].radius;
float3 p2 = mesh->curve_keys[first_key + i + 1].co;
float r2 = mesh->curve_keys[first_key + i + 1].radius;
/* currently ignores segment overlaps*/
surface_area += M_PI_F *(r1 + r2) * len(p1 - p2);
}
}
surface_area_map[mesh] = surface_area;
}
else
surface_area = it->second;
surface_area *= uniform_scale;
}
else {
foreach(Mesh::Triangle& t, mesh->triangles) {
float3 p1 = transform_point(&tfm, mesh->verts[t.v[0]]);
float3 p2 = transform_point(&tfm, mesh->verts[t.v[1]]);
float3 p3 = transform_point(&tfm, mesh->verts[t.v[2]]);
surface_area += triangle_area(p1, p2, p3);
}
foreach(Mesh::Curve& curve, mesh->curves) {
int first_key = curve.first_key;
for(int i = 0; i < curve.num_segments(); i++) {
float3 p1 = mesh->curve_keys[first_key + i].co;
float r1 = mesh->curve_keys[first_key + i].radius;
float3 p2 = mesh->curve_keys[first_key + i + 1].co;
float r2 = mesh->curve_keys[first_key + i + 1].radius;
p1 = transform_point(&tfm, p1);
p2 = transform_point(&tfm, p2);
/* currently ignores segment overlaps*/
surface_area += M_PI_F *(r1 + r2) * len(p1 - p2);
}
}
}
/* pack in texture */
int offset = i*OBJECT_SIZE;
memcpy(&objects[offset], &tfm, sizeof(float4)*3);
memcpy(&objects[offset+4], &itfm, sizeof(float4)*3);
objects[offset+8] = make_float4(surface_area, pass_id, random_number, __int_as_float(ob->particle_id));
if(need_motion == Scene::MOTION_PASS) {
/* motion transformations, is world/object space depending if mesh
* comes with deformed position in object space, or if we transform
* the shading point in world space */
Transform mtfm_pre = ob->motion.pre;
Transform mtfm_post = ob->motion.post;
if(!mesh->attributes.find(ATTR_STD_MOTION_PRE))
mtfm_pre = mtfm_pre * itfm;
if(!mesh->attributes.find(ATTR_STD_MOTION_POST))
mtfm_post = mtfm_post * itfm;
memcpy(&objects_vector[i*OBJECT_VECTOR_SIZE+0], &mtfm_pre, sizeof(float4)*3);
memcpy(&objects_vector[i*OBJECT_VECTOR_SIZE+3], &mtfm_post, sizeof(float4)*3);
}
#ifdef __OBJECT_MOTION__
else if(need_motion == Scene::MOTION_BLUR) {
if(ob->use_motion) {
/* decompose transformations for interpolation */
DecompMotionTransform decomp;
transform_motion_decompose(&decomp, &ob->motion, &ob->tfm);
memcpy(&objects[offset], &decomp, sizeof(float4)*8);
flag |= SD_OBJECT_MOTION;
have_motion = true;
}
}
#endif
/* dupli object coords */
objects[offset+9] = make_float4(ob->dupli_generated[0], ob->dupli_generated[1], ob->dupli_generated[2], 0.0f);
objects[offset+10] = make_float4(ob->dupli_uv[0], ob->dupli_uv[1], 0.0f, 0.0f);
/* object flag */
if(ob->use_holdout)
flag |= SD_HOLDOUT_MASK;
object_flag[i] = flag;
i++;
if(progress.get_cancel()) return;
}
device->tex_alloc("__objects", dscene->objects);
if(need_motion == Scene::MOTION_PASS)
device->tex_alloc("__objects_vector", dscene->objects_vector);
dscene->data.bvh.have_motion = have_motion;
}
void ObjectManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
if(!need_update)
return;
device_free(device, dscene);
need_update = false;
if(scene->objects.size() == 0)
return;
/* object info flag */
uint *object_flag = dscene->object_flag.resize(scene->objects.size());
/* set object transform matrices, before applying static transforms */
progress.set_status("Updating Objects", "Copying Transformations to device");
device_update_transforms(device, dscene, scene, object_flag, progress);
if(progress.get_cancel()) return;
/* prepare for static BVH building */
/* todo: do before to support getting object level coords? */
if(scene->params.bvh_type == SceneParams::BVH_STATIC) {
progress.set_status("Updating Objects", "Applying Static Transformations");
apply_static_transforms(scene, object_flag, progress);
}
/* allocate object flag */
device->tex_alloc("__object_flag", dscene->object_flag);
}
void ObjectManager::device_free(Device *device, DeviceScene *dscene)
{
device->tex_free(dscene->objects);
dscene->objects.clear();
device->tex_free(dscene->objects_vector);
dscene->objects_vector.clear();
device->tex_free(dscene->object_flag);
dscene->object_flag.clear();
}
void ObjectManager::apply_static_transforms(Scene *scene, uint *object_flag, Progress& progress)
{
/* todo: normals and displacement should be done before applying transform! */
/* todo: create objects/meshes in right order! */
/* counter mesh users */
map<Mesh*, int> mesh_users;
#ifdef __OBJECT_MOTION__
Scene::MotionType need_motion = scene->need_motion();
bool motion_blur = need_motion == Scene::MOTION_BLUR;
#else
bool motion_blur = false;
#endif
int i = 0;
foreach(Object *object, scene->objects) {
map<Mesh*, int>::iterator it = mesh_users.find(object->mesh);
if(it == mesh_users.end())
mesh_users[object->mesh] = 1;
else
it->second++;
}
if(progress.get_cancel()) return;
/* apply transforms for objects with single user meshes */
foreach(Object *object, scene->objects) {
if(mesh_users[object->mesh] == 1) {
if(!(motion_blur && object->use_motion)) {
if(!object->mesh->transform_applied) {
object->apply_transform();
object->mesh->transform_applied = true;
if(progress.get_cancel()) return;
}
object_flag[i] |= SD_TRANSFORM_APPLIED;
}
}
i++;
}
}
void ObjectManager::tag_update(Scene *scene)
{
need_update = true;
scene->curve_system_manager->need_update = true;
scene->mesh_manager->need_update = true;
scene->light_manager->need_update = true;
}
CCL_NAMESPACE_END