* Action FrameProp was checking if the string was true, not that it contained any text.
* Added GameObject.getVisible() since there is already a getVisible
* Added GameObject.getPropertyNames() Needed in apricot so Franky can collect and throw items in the level without having the names defined elsewhere or modifying his game logic which is stored in a separate blend file.
Edited Game engine docs to note that the matrix will need to be transposed if used with Mathutils.Matrix()
Edited "Collision" button since ray-sensor also uses collision.
To take advantage of this feature, you must have a mesh with
relative shape keys and shape Ipo curves with drivers referring
to bones of the mesh's parent armature.
The BGE will automatically detect the dependency between the
shape keys and the armature and execute the Ipo drivers during
the rendering of the armature actions.
This technique is used to make the armature action more natural:
the shape keys compensate in places where the armature deformation
is uggly and the drivers make sure that the shape correction
is synchronized with the bone position.
Note: This is not compatible with shape actions; BLender does
not allow to have Shape Ipo Curves and Shape actions at the same
time.
This patch introduces two options for the motion actuator:
damping: number of frames to reach the target velocity. It takes
into account the startup velocityin the target velocity direction
and add 1/damping fraction of target velocity until the full
velocity is reached. Works only with linear and angular velocity.
It will be extended to delta and force motion method in a future
release.
clamping: apply the force and torque as long as the target velocity
is not reached. If this option is set, the velocity specified
in linV or angV are not applied to the object but used as target
velocity. You should also specify a force in force or torque field:
the force will be applied as long as the velocity along the axis of
the vector set in linV or angV is not reached. Works best in low
friction environment.
* Nothing indicated - is not helpful, and very annoying with occluded geometry with high poly meshes, sometimes the selection doesn't work 100% of the time and the menu pops up over what you want to select.
* No (correct) camera error doesn't seem to be needed, has been there since rev 2.
NAND controller is an inverted AND controller: the output is
1 if any of the input is 0.
NOR controller is an inverted OR controller: the output is 0
if any of the input is 1.
XOR controller is an exclusive OR: the output is 1 if and only
if one input is 1 and all the other inputs are 0.
XNOR controller is an inverted XOR: the output is 0 if and only
if one input is 0 and all the other inputs are 0.
The NAND, NORT and XNOR controllers are very usefull to create
complementary outputs to start and stop actuators synchronously.
MSCV project files updated.
Level option is now available on all sensors but is only implemented on
mouse and keyboard sensors. The purpose of that option is to make
the sensor react on level rather than edge by default. It's only
applicable to state engine system when there is a state transition:
the sensor will generate a pulse if the condition is met from the
start of the state. Normally, the keyboard sensor generate a pulse
only when the key is pressed and not when the key is already pressed.
This patch allows to select this behavior.
The second part of the patch corrects the reset method for sensors
with inverted output.
Snap to edges and vertice without have to go through faces.
This means you can import floor plans and use the edges as snapping guides and other sort of fun things.
The bounding box test still needs padding though.
Added serious interlacing to movies opened using ffmpeg.
(Other video decoders to be done)
Rational: deinterlacing, if done seriously _has_ to be done
in YUV-space. Since internal interface first converts data
to RGB we are pretty much lost (and fall back to IMB_filtery
in that case).
This patch introduces a simple state engine system with the logic bricks. This system features full
backward compatibility, multiple active states, multiple state transitions, automatic disabling of
sensor and actuators, full GUI support and selective display of sensors and actuators.
Note: Python API is available but not documented yet. It will be added asap.
State internals
===============
The state system is object based. The current state mask is stored in the object as a 32 bit value;
each bit set in the mask is an active state. The controllers have a state mask too but only one bit
can be set: a controller belongs to a single state. The game engine will only execute controllers
that belong to active states. Sensors and actuators don't have a state mask but are effectively
attached to states via their links to the controllers. Sensors and actuators can be connected to more
than one state. When a controller becomes inactive because of a state change, its links to sensors
and actuators are temporarily broken (until the state becomes active again). If an actuator gets isolated,
i.e all the links to controllers are broken, it is automatically disabled. If a sensor gets isolated,
the game engine will stop calling it to save CPU. It will also reset the sensor internal state so that
it can react as if the game just started when it gets reconnected to an active controller. For example,
an Always sensor in no pulse mode that is connected to a single state (i.e connected to one or more
controllers of a single state) will generate a pulse each time the state becomes active. This feature is
not available on all sensors, see the notes below.
GUI
===
This system system is fully configurable through the GUI: the object state mask is visible under the
object bar in the controller's colum as an array of buttons just like the 3D view layer mask.
Click on a state bit to only display the controllers of that state. You can select more than one state
with SHIFT-click. The All button sets all the bits so that you can see all the controllers of the object.
The Ini button sets the state mask back to the object default state. You can change the default state
of object by first selecting the desired state mask and storing using the menu under the State button.
If you define a default state mask, it will be loaded into the object state make when you load the blend
file or when you run the game under the blenderplayer. However, when you run the game under Blender,
the current selected state mask will be used as the startup state for the object. This allows you to test
specific state during the game design.
The controller display the state they belong to with a new button in the controller header. When you add
a new controller, it is added by default in the lowest enabled state. You can change the controller state
by clicking on the button and selecting another state. If more than one state is enabled in the object
state mask, controllers are grouped by state for more readibility.
The new Sta button in the sensor and actuator column header allows you to display only the sensors and
actuators that are linked to visible controllers.
A new state actuator is available to modify the state during the game. It defines a bit mask and
the operation to apply on the current object state mask:
Cpy: the bit mask is copied to the object state mask.
Add: the bits that set in the bit mask will be turned on in the object state mask.
Sub: the bits that set in the bit mask will be turned off in the object state mask.
Inv: the bits that set in the bit mask will be inverted in the objecyy state mask.
Notes
=====
- Although states have no name, a simply convention consists in using the name of the first controller
of the state as the state name. The GUI will support that convention by displaying as a hint the name
of the first controller of the state when you move the mouse over a state bit of the object state mask
or of the state actuator bit mask.
- Each object has a state mask and each object can have a state engine but if several objects are
part of a logical group, it is recommended to put the state engine only in the main object and to
link the controllers of that object to the sensors and actuators of the different objects.
- When loading an old blend file, the state mask of all objects and controllers are initialized to 1
so that all the controllers belong to this single state. This ensures backward compatibility with
existing game.
- When the state actuator is activated at the same time as other actuators, these actuators are
guaranteed to execute before being eventually disabled due to the state change. This is useful for
example to send a message or update a property at the time of changing the state.
- Sensors that depend on underlying resource won't reset fully when they are isolated. By the time they
are acticated again, they will behave as follow:
* keyboard sensor: keys already pressed won't be detected. The keyboard sensor is only sensitive
to new key press.
* collision sensor: objects already colliding won't be detected. Only new collisions are
detected.
* near and radar sensor: same as collision sensor.
* OB prefix is needed when specifying the object for the Message Actuator, this is very bad since other object fields in the BGE dont need this prefix - a real fix would need do_versions to keep old files running.
* RotationMatrix was all nans if the rotation vector axis was 0,0,0, Changed so in this case just return a matrix that doesn't rotate anything,
spent some angry hours to find these issues, maybe this will save others the hassle ;)
This patch adds the ability to specify a falloff radius in the Wave modifier.
Currently only linear falloff is supported.
Thanks to Michael Fox for the patch!
* For 2D filters, don't require opengl 2.0 but just the extensions,
so it works on computers without full 2.0 support too.
* In debug mode, don't print memory statistics for preview render.
Shape Action are now supported in the BGE. A new type of actuator "Shape Action" is available on mesh objects. It can be combined with Action actuator on parent armature. Only relative keys are supported. All the usual action options are available: type, blending, priority, Python API. Only actions with shape channels should be specified of course, otherwise the actuator has no effect. Shape action will still work after a mesh replacement provided that the new mesh has compatible shape keys.
GLEW
====
Added the GLEW opengl extension library into extern/, always compiled
into Blender now. This is much nicer than doing this kind of extension
management manually, and will be used in the game engine, for GLSL, and
other opengl extensions.
* According to the GLEW website it works on Windows, Linux, Mac OS X,
FreeBSD, Irix, and Solaris. There might still be platform specific
issues due to this commit, so let me know and I'll look into it.
* This means also that all extensions will now always be compiled in,
regardless of the glext.h on the platform where compilation happens.
Game Engine
===========
Refactoring of the use of opengl extensions and other drawing code
in the game engine, and cleaning up some hacks related to GLSL
integration. These changes will be merged into trunk too after this.
The game engine graphics demos & apricot level survived my tests,
but this could use some good testing of course.
For users: please test with the options "Generate Display Lists" and
"Vertex Arrays" enabled, these should be the fastest and are supposed
to be "unreliable", but if that's the case that's probably due to bugs
that can be fixed.
* The game engine now also uses GLEW for extensions, replacing the
custom opengl extensions code that was there. Removes a lot of
#ifdef's, but the runtime checks stay of course.
* Removed the WITHOUT_GLEXT environment variable. This was added to
work around a specific bug and only disabled multitexturing anyway.
It might also have caused a slowdown since it was retrieving the
environment variable for every vertex in immediate mode (bug #13680).
* Refactored the code to allow drawing skinned meshes with vertex
arrays too, removing some specific immediate mode drawing functions
for this that only did extra normal calculation. Now it always splits
vertices of flat faces instead.
* Refactored normal recalculation with some minor optimizations,
required for the above change.
* Removed some outdated code behind the __NLA_OLDDEFORM #ifdef.
* Fixed various bugs in setting of multitexture coordinates and vertex
attributes for vertex arrays. These were not being enabled/disabled
correct according to the opengl spec, leading to crashes. Also tangent
attributes used an immediate mode call for vertex arrays, which can't
work.
* Fixed use of uninitialized variable in RAS_TexVert.
* Exporting skinned meshes was doing O(n^2) lookups for vertices and
deform weights, now uses same trick as regular meshes.
patch from Shawn Zilbert (enigmatic)
This patch adds the camera data block type to the oops schematic view of the outliner. It also includes a little bit of code cleanup in the oops files.
Snap to cage only in edit mode (respect the edit cage flag of modifiers).
Especially important for subsurf, otherwise, Andy's automerge + snap video doesn't work in current SVN.
This commit fix the following problem in the DPX code:
1) The code always assume a depth of 10 bits
2) The code don't check the file type (Log or Linear)
1. Updated selected restriction to not be so stingy. Snapping on edges and vertices work if they are part of a partially moving face
2. Change depth ordering (which didn't work all the time). Hits are sorted according to 2D distance and then depth, so for overlapping hits, it picks the one in front.