saves a marshal'd GameLogic.globalDict to the blendfile path with the blend extension replaced with bgeconf
Use this in YoFrankie to save keyboard layout and graphics quality settings.
I'm getting this error now:
GPG_Application.cpp: In member function 'void GPG_Application::stopEngine()':
/System/Library/Frameworks/Python.framework/Versions/2.3/include/python2.3/marshal.h:12: error: too many arguments to function 'PyObject* PyMarshal_WriteObjectToString(PyObject*)'
GPG_Application.cpp:720: error: at this point in file
Are we offically not supporint older versions of python now? :)
Kent
the features that are needed to run the game. Compile tested with
scons, make, but not cmake, that seems to have an issue not related
to these changes. The changes include:
* GLSL support in the viewport and game engine, enable in the game
menu in textured draw mode.
* Synced and merged part of the duplicated blender and gameengine/
gameplayer drawing code.
* Further refactoring of game engine drawing code, especially mesh
storage changed a lot.
* Optimizations in game engine armatures to avoid recomputations.
* A python function to get the framerate estimate in game.
* An option take object color into account in materials.
* An option to restrict shadow casters to a lamp's layers.
* Increase from 10 to 18 texture slots for materials, lamps, word.
An extra texture slot shows up once the last slot is used.
* Memory limit for undo, not enabled by default yet because it
needs the .B.blend to be changed.
* Multiple undo for image painting.
* An offset for dupligroups, so not all objects in a group have to
be at the origin.
HELP BUILD SYSTEM MAINTAINERS: Please help with updating all build systems: the newly added files need to be added. Note that the src/SoftBody has been added for future extension of real-time soft bodies.
without this, an incorrect sound path could cause scripts to to fail, making some functionality not work at all.
This also fixes a problem where samples would be loaded multiple times.
Introduction of a new Delay sensor that can be used to
generate positive and negative triggers at precise time,
expressed in number of frames.
The delay parameter defines the length of the initial
OFF period. A positive trigger is generated at the end
of this period. The duration parameter defines the
length of the ON period following the OFF period.
A negative trigger is generated at the end of the ON period.
If duration is 0, the sensor stays ON and there is no
negative trigger.
The sensor runs the OFF-ON cycle once unless the repeat
option is set: the OFF-ON cycle repeats indefinately
(or the OFF cycle if duration is 0).
The new generic SCA_ISensor::reset() Python function
can be used at any time to restart the sensor: the
current cycle is interrupted and no trigger is generated.
* bugfix for BGE python api - SetParent actuator getObject would segfault if the object was not set.
* Added utility function ConvertPythonToGameObject() that can take a GameObject, string or None and set the game object from this since it was being done in a number of places.
* allow setObject(None), since no object is valid for actuators, Python should be able to set this.
* added optional argument for getObject() so it returns the KX_GameObject rather then its name, would prefer this be default but it could break existing games.
* removed macros that were not used much, some misleading.
* removed error string setting calls that overwrote the error set by PyArg_ParseTuple with a less useful one.
* use python macros Py_RETURN_NONE, Py_RETURN_TRUE, Py_RETURN_FALSE
We assign the material name before check the pointer.
Please Benoit check this and also I have a compiler warning
about the second argument in the previous call of
ConvertMaterialIpos, the argument is NULL but the function
need a dword.
With this patch, only sensors that are connected to
active states are actually registered in the logic
manager. Inactive sensors won't take any CPU,
especially the Radar and Near sensors that use a
physical object for the detection: these objects
are removed from the physics engine.
To take advantage of this optimization patch, you
need to define very light idle state when the
objects are inactive: make them transparent, suspend
the physics, keep few sensors active (e,g a message
sensor to wake up), etc.
=======================================
Alpha blending + sorting was revised, to fix bugs and get it
to work more predictable.
* A new per texture face "Sort" setting defines if the face
is alpha sorted or not, instead of abusing the "ZTransp"
setting as it did before.
* Existing files are converted to hopefully match the old
behavior as much as possible with a version patch.
* On new meshes the Sort flag is disabled by the default, to
avoid unexpected and hard to find slowdowns.
* Alpha sorting for faces was incredibly slow. Sorting faces
in a mesh with 600 faces lowered the framerate from 200 to
70 fps in my test.. the sorting there case goes about 15x
faster now, but it is still advised to use Clip Alpha if
possible instead of regular Alpha.
* There still various limitations in the alpha sorting code,
I've added some comments to the code about this.
Some docs at the bottom of the page:
http://www.blender.org/development/current-projects/changes-since-246/realtime-glsl-materials/
Merged some fixes from the apricot branch, most important
change is that tangents are now exactly the same as the rest
of Blender, instead of being computed in the game engine with a
different algorithm.
Also, the subversion was bumped to 1.
The min/max parameters define a minimum/maximum angle
that the object axis can have with the reference
direction without being constrainted. The angle is
expressed in degree and is limited to 0-180 range.
The min/max parameters define a conical free zone
around the reference direction.
If the object axis is outside that free zone, the
actuator will tend to put it back using as a temporary
reference direction the vector that is exactly at
min or max degree of the reference direction
(depending if the axis angle is below the minimum
or above the maximum) and is located in the plane
formed by the axis and the reference direction.
With a low damping value, this is equivalent to
clamping the axis orientation within min/max degree
of the reference direction.
Backward compatibility corresponds to the absence
of free zone: min = max = 0.
Certain actuators hold a pointer to an objects: Property,
SceneCamera, AddObject, Camera, Parent, TractTo. When a
group is duplicated, the actuators that point to objects
within the group will be relinked to point to the
replicated objects and not to the original objects.
This helps to setup self-contained group with a camera
following a character for example.
This feature also works when adding a single object
(and all its children) with the AddObject actuator.
The second part of the patch extends the protection
against object deletion to all the actuators of the above
list (previously, only the TrackTo, AddObject and
Property actuators were protected). In case the target
object of these actuators is deleted, the BGE won't
crash.
Blender duplicates groups in the 3D view at the location of objects having the DUPLIGROUP option set. This feature is now supported in the BGE: the groups will be instantiated as in the 3D view when the scene is converted. This is useful to populate a scene with multiple enemies without having to actually duplicate the objects in the blend file.
Notes: * The BGE applies the same criteria to instantiate the group as Blender to display them: if you see the group in the 3D view, it will be instantiated in the BGE.
* Groups are instantiated as if the object having the DUPLIGROUP option (usually an empty) executed an AddObject actuator on the top objects of the group (objects without parent).
* As a result, only intra-group parent relationship is supported: the BGE will not instantiate objects that have parents outside the group.
* Intra-group logic bricks connections are preserved between the duplicated objects, even between the top objects of the group.
* For best result, the state engine of the objects in the group should be self-contained: logic bricks should only have intra-group connections. Use messages to communicate with state engines outside the group.
* Nested groups are supported: if one or more objects in the group have the DUPLIGROUP option set, the corresponding groups will be instantiated at the corresponding position and orientation.
* Nested groups are instantiated as separate groups, not as one big group.
* Linked groups are supported as well as groups containing objects from the active layers.
* There is a difference in the way Blender displays the groups in the 3D view and how BGE instantiates them: Blender does not take into account the parent relationship in the group and displays the objects as if they were all children of the object having the DUPLIGROUP option. That's correct for the top objects of the group but not for the children. Hence the orientation of the children objects may be different in the BGE.
* An AddGroup actuator will be added in a future release.
When using states, an action like kick or throw can often switch out before finishing playing the action, and there was no way to play from the start frame the second time round. (even setting the actions current frame through python doesn't work work)
=============================
* Clean up and optimizations in skinned/deformed mesh code.
* Compatibility fixes and clean up in the rasterizer.
* Changes related to GLSL shadow buffers which should have no
effect, to keep the code in sync with apricot.
New Add mode for Ipo actuator
=============================
A new Add button, mutually exclusive with Force button, is available in
the Ipo actuator. When selected, it activates the Add mode that consists
in adding the Ipo curve to the current object situation in world
coordinates, or parent coordinates if the object has a parent. Scale Ipo
curves are multiplied instead of added to the object current scale.
If the local flag is selected, the Ipo curve is added (multiplied) in
the object's local coordinates.
Delta Ipo curves are handled identically to normal Ipo curve and there
is no need to work with Delta Ipo curves provided that you make sure
that the Ipo curve starts from origin. Origin means location 0 for
Location Ipo curve, rotation 0 for Rotation Ipo curve and scale 1 for
Scale Ipo curve.
The "current object situation" means the object's location, rotation
and scale at the start of the Ipo curve. For Loop Stop and Loop End Ipo
actuators, this means at the start of each loop. This initial state is
used as a base during the execution of the Ipo Curve but when the Ipo
curve is restarted (later or immediately in case of Loop mode), the
object current situation at that time is used as the new base.
For reference, here is the exact operation of the Add mode for each
type of Ipo curve (oLoc, oRot, oScale, oMat: object's loc/rot/scale
and orientation matrix at the start of the curve; iLoc, iRot, iScale,
iMat: Ipo curve loc/rot/scale and orientation matrix resulting from
the rotation).
Location
Local=false: newLoc = oLoc+iLoc
Local=true : newLoc = oLoc+oScale*(oMat*iLoc)
Rotation
Local=false: newMat = iMat*oMat
Local=true : newMat = oMat*iMat
Scale
Local=false: newScale = oScale*iScale
Local=true : newScale = oScale*iScale
Add+Local mode is very useful to have dynamic object executing complex
movement relative to their current location/orientation. Of cource,
dynamics should be disabled during the execution of the curve.
Several corrections in state system
===================================
- Object initial state is taken into account when adding object
dynamically
- Fix bug with link count when adding object dynamically
- Fix false on-off detection for Actuator sensor when actuator is
trigged on negative event.
- Fix Parent actuator false activation on negative event
- Loop Ipo curve not restarting at correct frame when start frame is
different from one.
General
=======
- Removal of Damp option in motion actuator (replaced by
Servo control motion).
- No PyDoc at present, will be added soon.
Generalization of the Lvl option
================================
A sensor with the Lvl option selected will always produce an
event at the start of the game or when entering a state or at
object creation. The event will be positive or negative
depending of the sensor condition. A negative pulse makes
sense when used with a NAND controller: it will be converted
into an actuator activation.
Servo control motion
====================
A new variant of the motion actuator allows to control speed
with force. The control if of type "PID" (Propotional, Integral,
Derivate): the force is automatically adapted to achieve the
target speed. All the parameters of the servo controller are
configurable. The result is a great variety of motion style:
anysotropic friction, flying, sliding, pseudo Dloc...
This actuator should be used in preference to Dloc and LinV
as it produces more fluid movements and avoids the collision
problem with Dloc.
LinV : target speed as (X,Y,Z) vector in local or world
coordinates (mostly useful in local coordinates).
Limit: the force can be limited along each axis (in the same
coordinates of LinV). No limitation means that the force
will grow as large as necessary to achieve the target
speed along that axis. Set a max value to limit the
accelaration along an axis (slow start) and set a min
value (negative) to limit the brake force.
P: Proportional coefficient of servo controller, don't set
directly unless you know what you're doing.
I: Integral coefficient of servo controller. Use low value
(<0.1) for slow reaction (sliding), high values (>0.5)
for hard control. The P coefficient will be automatically
set to 60 times the I coefficient (a reasonable value).
D: Derivate coefficient. Leave to 0 unless you know what
you're doing. High values create instability.
Notes: - This actuator works perfectly in zero friction
environment: the PID controller will simulate friction
by applying force as needed.
- This actuator is compatible with simple Drot motion
actuator but not with LinV and Dloc motion.
- (0,0,0) is a valid target speed.
- All parameters are accessible through Python.
Distance constraint actuator
============================
A new variant of the constraint actuator allows to set the
distance and orientation relative to a surface. The controller
uses a ray to detect the surface (or any object) and adapt the
distance and orientation parallel to the surface.
Damp: Time constant (in nb of frames) of distance and
orientation control.
Dist: Select to enable distance control and set target
distance. The object will be position at the given
distance of surface along the ray direction.
Direction: chose a local axis as the ray direction.
Range: length of ray. Objecgt within this distance will be
detected.
N : Select to enable orientation control. The actuator will
change the orientation and the location of the object
so that it is parallel to the surface at the vertical
of the point of contact of the ray.
M/P : Select to enable material detection. Default is property
detection.
Property/Material: name of property/material that the target of
ray must have to be detected. If not set, property/
material filter is disabled and any collisioning object
within range will be detected.
PER : Select to enable persistent operation. Normally the
actuator disables itself automatically if the ray does
not reach a valid target.
time : Maximum activation time of actuator.
0 : unlimited.
>0: number of frames before automatic deactivation.
rotDamp: Time constant (in nb of frame) of orientation control.
0 : use Damp parameter.
>0: use a different time constant for orientation.
Notes: - If neither N nor Dist options are set, the actuator
does not change the position and orientation of the
object; it works as a ray sensor.
- The ray has no "X-ray" capability: if the first object
hit does not have the required property/material, it
returns no hit and the actuator disables itself unless
PER option is enabled.
- This actuator changes the position and orientation but
not the speed of the object. This has an important
implication in a gravity environment: the gravity will
cause the speed to increase although the object seems
to stay still (it is repositioned at each frame).
The gravity must be compensated in one way or another.
the new servo control motion actuator is the simplest
way: set the target speed along the ray axis to 0
and the servo control will automatically compensate
the gravity.
- This actuator changes the orientation of the object
and will conflict with Drot motion unless it is
placed BEFORE the Drot motion actuator (the order of
actuator is important)
- All parameters are accessible through Python.
Orientation constraint
======================
A new variant of the constraint actuator allows to align an
object axis along a global direction.
Damp : Time constant (in nb of frames) of orientation control.
X,Y,Z: Global coordinates of reference direction.
time : Maximum activation time of actuator.
0 : unlimited.
>0: number of frames before automatic deactivation.
Notes: - (X,Y,Z) = (0,0,0) is not a valid direction
- This actuator changes the orientation of the object
and will conflict with Drot motion unless it is placed
BEFORE the Drot motion actuator (the order of
actuator is important).
- This actuator doesn't change the location and speed.
It is compatible with gravity.
- All parameters are accessible through Python.
Actuator sensor
===============
This sensor detects the activation and deactivation of actuators
of the same object. The sensor generates a positive pulse when
the corresponding sensor is activated and a negative pulse when
it is deactivated (the contrary if the Inv option is selected).
This is mostly useful to chain actions and to detect the loss of
contact of the distance motion actuator.
Notes: - Actuators are disabled at the start of the game; if you
want to detect the On-Off transition of an actuator
after it has been activated at least once, unselect the
Lvl and Inv options and use a NAND controller.
- Some actuators deactivates themselves immediately after
being activated. The sensor detects this situation as
an On-Off transition.
- The actuator name can be set through Python.
This meant an error in a script could be reported in a different line or script file which makes it quite hard to trace the problem. There were also places where invalid pointers could be used because of this.
The whole game engine pyapi probably needs to have these checks added.
* Action FrameProp was checking if the string was true, not that it contained any text.
* Added GameObject.getVisible() since there is already a getVisible
* Added GameObject.getPropertyNames() Needed in apricot so Franky can collect and throw items in the level without having the names defined elsewhere or modifying his game logic which is stored in a separate blend file.
To take advantage of this feature, you must have a mesh with
relative shape keys and shape Ipo curves with drivers referring
to bones of the mesh's parent armature.
The BGE will automatically detect the dependency between the
shape keys and the armature and execute the Ipo drivers during
the rendering of the armature actions.
This technique is used to make the armature action more natural:
the shape keys compensate in places where the armature deformation
is uggly and the drivers make sure that the shape correction
is synchronized with the bone position.
Note: This is not compatible with shape actions; BLender does
not allow to have Shape Ipo Curves and Shape actions at the same
time.
This patch introduces two options for the motion actuator:
damping: number of frames to reach the target velocity. It takes
into account the startup velocityin the target velocity direction
and add 1/damping fraction of target velocity until the full
velocity is reached. Works only with linear and angular velocity.
It will be extended to delta and force motion method in a future
release.
clamping: apply the force and torque as long as the target velocity
is not reached. If this option is set, the velocity specified
in linV or angV are not applied to the object but used as target
velocity. You should also specify a force in force or torque field:
the force will be applied as long as the velocity along the axis of
the vector set in linV or angV is not reached. Works best in low
friction environment.